David Uriarte, Luis Gonzaga Santesteban, José Manuel Mirás-Avalos, Ignacio Buesa, Javier José Cancela, Juan Luis Chacón, José Mariano Escalona, Diego Sebastiano Intrigliolo, Miriam Lampreave, Amelia Montoro, Luis Rivacoba, Fernando Visconti, Jesús Yuste, Carlos Miranda
{"title":"通过协同分析量化水分状况对葡萄营养生长、产量和葡萄成分的影响","authors":"David Uriarte, Luis Gonzaga Santesteban, José Manuel Mirás-Avalos, Ignacio Buesa, Javier José Cancela, Juan Luis Chacón, José Mariano Escalona, Diego Sebastiano Intrigliolo, Miriam Lampreave, Amelia Montoro, Luis Rivacoba, Fernando Visconti, Jesús Yuste, Carlos Miranda","doi":"10.1155/ajgw/1588228","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The consolidation of scientific knowledge is based on the accumulation and understanding of previous findings. Nowadays, reviews of the scientific literature have become more effective through the use of meta-analyses, which are systematic evaluations of the results from multiple studies. Similarly, mega-analyses, which combine raw data from many studies into a single sample for processing and statistical analysis, are a very powerful tool for analyzing results of heterogeneous origin but require a high level of collaboration between the researchers contributing data. In the framework of a collaborative methodology between different Spanish viticultural research groups, this work uses a mega-analytical approach to quantify the effects of changes in vine water status on vine vegetative growth, yield, and grape composition, integrating a wide range of growing conditions to obtain robust general trends of vine performance under water deficit. The mean seasonal stem water potential data from the different studies allowed a classification into five levels of water status (no deficit ⟶ mild ⟶ moderate ⟶ high ⟶ severe). A progressive decrease in vegetative growth with increasing deficit was observed, while yield decreased more markedly as water deficit progressed from moderate to high. On the other hand, titratable acidity was more sensitive to variation in water status than sugar concentration, with a greater decrease in titratable acidity when changing from no to moderate deficit. Conversely, increasing water deficit from moderate to high resulted in the greatest increases in grape anthocyanin in the red varieties explored. The results obtained in this work provide solid information on general trends in grapevine response to water deficit that can be used in simulation models or incorporated by grape growers in their decision-making processes in relation not only to irrigation management but also on other agronomic tools to impact grapevine water status.</p>\n </div>","PeriodicalId":8582,"journal":{"name":"Australian Journal of Grape and Wine Research","volume":"2025 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/ajgw/1588228","citationCount":"0","resultStr":"{\"title\":\"Quantifying the Effects of Water Status on Grapevine Vegetative Growth, Yield, and Grape Composition Through a Collaborative Analysis\",\"authors\":\"David Uriarte, Luis Gonzaga Santesteban, José Manuel Mirás-Avalos, Ignacio Buesa, Javier José Cancela, Juan Luis Chacón, José Mariano Escalona, Diego Sebastiano Intrigliolo, Miriam Lampreave, Amelia Montoro, Luis Rivacoba, Fernando Visconti, Jesús Yuste, Carlos Miranda\",\"doi\":\"10.1155/ajgw/1588228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>The consolidation of scientific knowledge is based on the accumulation and understanding of previous findings. Nowadays, reviews of the scientific literature have become more effective through the use of meta-analyses, which are systematic evaluations of the results from multiple studies. Similarly, mega-analyses, which combine raw data from many studies into a single sample for processing and statistical analysis, are a very powerful tool for analyzing results of heterogeneous origin but require a high level of collaboration between the researchers contributing data. In the framework of a collaborative methodology between different Spanish viticultural research groups, this work uses a mega-analytical approach to quantify the effects of changes in vine water status on vine vegetative growth, yield, and grape composition, integrating a wide range of growing conditions to obtain robust general trends of vine performance under water deficit. The mean seasonal stem water potential data from the different studies allowed a classification into five levels of water status (no deficit ⟶ mild ⟶ moderate ⟶ high ⟶ severe). A progressive decrease in vegetative growth with increasing deficit was observed, while yield decreased more markedly as water deficit progressed from moderate to high. On the other hand, titratable acidity was more sensitive to variation in water status than sugar concentration, with a greater decrease in titratable acidity when changing from no to moderate deficit. Conversely, increasing water deficit from moderate to high resulted in the greatest increases in grape anthocyanin in the red varieties explored. The results obtained in this work provide solid information on general trends in grapevine response to water deficit that can be used in simulation models or incorporated by grape growers in their decision-making processes in relation not only to irrigation management but also on other agronomic tools to impact grapevine water status.</p>\\n </div>\",\"PeriodicalId\":8582,\"journal\":{\"name\":\"Australian Journal of Grape and Wine Research\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/ajgw/1588228\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Grape and Wine Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/ajgw/1588228\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Grape and Wine Research","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/ajgw/1588228","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Quantifying the Effects of Water Status on Grapevine Vegetative Growth, Yield, and Grape Composition Through a Collaborative Analysis
The consolidation of scientific knowledge is based on the accumulation and understanding of previous findings. Nowadays, reviews of the scientific literature have become more effective through the use of meta-analyses, which are systematic evaluations of the results from multiple studies. Similarly, mega-analyses, which combine raw data from many studies into a single sample for processing and statistical analysis, are a very powerful tool for analyzing results of heterogeneous origin but require a high level of collaboration between the researchers contributing data. In the framework of a collaborative methodology between different Spanish viticultural research groups, this work uses a mega-analytical approach to quantify the effects of changes in vine water status on vine vegetative growth, yield, and grape composition, integrating a wide range of growing conditions to obtain robust general trends of vine performance under water deficit. The mean seasonal stem water potential data from the different studies allowed a classification into five levels of water status (no deficit ⟶ mild ⟶ moderate ⟶ high ⟶ severe). A progressive decrease in vegetative growth with increasing deficit was observed, while yield decreased more markedly as water deficit progressed from moderate to high. On the other hand, titratable acidity was more sensitive to variation in water status than sugar concentration, with a greater decrease in titratable acidity when changing from no to moderate deficit. Conversely, increasing water deficit from moderate to high resulted in the greatest increases in grape anthocyanin in the red varieties explored. The results obtained in this work provide solid information on general trends in grapevine response to water deficit that can be used in simulation models or incorporated by grape growers in their decision-making processes in relation not only to irrigation management but also on other agronomic tools to impact grapevine water status.
期刊介绍:
The Australian Journal of Grape and Wine Research provides a forum for the exchange of information about new and significant research in viticulture, oenology and related fields, and aims to promote these disciplines throughout the world. The Journal publishes results from original research in all areas of viticulture and oenology. This includes issues relating to wine, table and drying grape production; grapevine and rootstock biology, genetics, diseases and improvement; viticultural practices; juice and wine production technologies; vine and wine microbiology; quality effects of processing, packaging and inputs; wine chemistry; sensory science and consumer preferences; and environmental impacts of grape and wine production. Research related to other fermented or distilled beverages may also be considered. In addition to full-length research papers and review articles, short research or technical papers presenting new and highly topical information derived from a complete study (i.e. not preliminary data) may also be published. Special features and supplementary issues comprising the proceedings of workshops and conferences will appear periodically.