命运毒素:E(3)等变多器官毒性预测的片段注意力转换器

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sumin Ha, Dongmin Bang, Sun Kim
{"title":"命运毒素:E(3)等变多器官毒性预测的片段注意力转换器","authors":"Sumin Ha,&nbsp;Dongmin Bang,&nbsp;Sun Kim","doi":"10.1186/s13321-025-01012-5","DOIUrl":null,"url":null,"abstract":"<div><p>Toxicity is a critical hurdle in drug development, often causing the late-stage failure of promising compounds. Existing computational prediction models often focus on single-organ toxicity. However, avoiding toxicity of an organ, such as reducing gastrointestinal side effects, may inadvertently lead to toxicity in another organ, as seen in the real case of rofecoxib, which was withdrawn due to increased cardiovascular risks. Thus, simultaneous prediction of multi-organ toxicity is a desirable but challenging task. The main challenges are (1) the variability of substructures that contribute to toxicity of different organs, (2) insufficient power of molecular representations in diverse perspectives, and (3) explainability of prediction results especially in terms of substructures or potential toxicophores. To address these challenges with multiple strategies, we developed FATE-Tox, a novel multi-view deep learning framework for multi-organ toxicity prediction. For variability of substructures, we used three fragmentation methods such as BRICS, Bemis-Murcko scaffolds, and RDKit Functional Groups to formulate fragment-level graphs so that diverse substructures can be used to identify toxicity for different organs. For insufficient power of molecular representations, we used molecular representations in both 2D and 3D perspectives. For explainability, our fragment attention transformer identifies potential 3D toxicophores using attention coefficients. </p><p><b>Scientific contribution</b>: Our framework achieved significant improvements in prediction performance, with up to 3.01% gains over prior baseline methods on toxicity benchmark datasets from MoleculeNet (BBBP, SIDER, ClinTox) and TDC (DILI, Skin Reaction, Carcinogens, and hERG), while the multi-task learning approach further enhanced performance by up to 1.44% compared to the single-task learning framework that had already surpassed these baselines. Additionally, attention visualization aligning with literature contributes to greater transparency in predictive modeling. Our approach has the potential to provide scientists and clinicians with a more interpretable and clinically meaningful tool to assess systemic toxicity, ultimately supporting safer and more informed drug development processes.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01012-5","citationCount":"0","resultStr":"{\"title\":\"Fate-tox: fragment attention transformer for E(3)-equivariant multi-organ toxicity prediction\",\"authors\":\"Sumin Ha,&nbsp;Dongmin Bang,&nbsp;Sun Kim\",\"doi\":\"10.1186/s13321-025-01012-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Toxicity is a critical hurdle in drug development, often causing the late-stage failure of promising compounds. Existing computational prediction models often focus on single-organ toxicity. However, avoiding toxicity of an organ, such as reducing gastrointestinal side effects, may inadvertently lead to toxicity in another organ, as seen in the real case of rofecoxib, which was withdrawn due to increased cardiovascular risks. Thus, simultaneous prediction of multi-organ toxicity is a desirable but challenging task. The main challenges are (1) the variability of substructures that contribute to toxicity of different organs, (2) insufficient power of molecular representations in diverse perspectives, and (3) explainability of prediction results especially in terms of substructures or potential toxicophores. To address these challenges with multiple strategies, we developed FATE-Tox, a novel multi-view deep learning framework for multi-organ toxicity prediction. For variability of substructures, we used three fragmentation methods such as BRICS, Bemis-Murcko scaffolds, and RDKit Functional Groups to formulate fragment-level graphs so that diverse substructures can be used to identify toxicity for different organs. For insufficient power of molecular representations, we used molecular representations in both 2D and 3D perspectives. For explainability, our fragment attention transformer identifies potential 3D toxicophores using attention coefficients. </p><p><b>Scientific contribution</b>: Our framework achieved significant improvements in prediction performance, with up to 3.01% gains over prior baseline methods on toxicity benchmark datasets from MoleculeNet (BBBP, SIDER, ClinTox) and TDC (DILI, Skin Reaction, Carcinogens, and hERG), while the multi-task learning approach further enhanced performance by up to 1.44% compared to the single-task learning framework that had already surpassed these baselines. Additionally, attention visualization aligning with literature contributes to greater transparency in predictive modeling. Our approach has the potential to provide scientists and clinicians with a more interpretable and clinically meaningful tool to assess systemic toxicity, ultimately supporting safer and more informed drug development processes.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01012-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-01012-5\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01012-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

毒性是药物开发中的一个关键障碍,经常导致有希望的化合物在后期失败。现有的计算预测模型往往侧重于单器官毒性。然而,避免一个器官的毒性,例如减少胃肠道副作用,可能会无意中导致另一个器官的毒性,正如在罗非昔布的实际案例中所看到的那样,由于心血管风险增加而停药。因此,同时预测多器官毒性是一项理想但具有挑战性的任务。主要的挑战是:(1)导致不同器官毒性的亚结构的可变性,(2)不同角度的分子表征能力不足,以及(3)预测结果的可解释性,特别是在亚结构或潜在毒性载体方面。为了用多种策略解决这些挑战,我们开发了FATE-Tox,这是一种用于多器官毒性预测的新型多视图深度学习框架。对于亚结构的可变性,我们使用了三种碎片化方法,如BRICS、Bemis-Murcko支架和RDKit官能团来制定碎片级图,以便不同的亚结构可以用于识别不同器官的毒性。由于分子表示的能力不足,我们在2D和3D视角中都使用了分子表示。为了便于解释,我们的碎片注意力转换器使用注意力系数识别潜在的3D毒物团。科学贡献:我们的框架在预测性能方面取得了显著的进步,在来自MoleculeNet (BBBP、SIDER、ClinTox)和TDC (DILI、Skin Reaction、Carcinogens和hERG)的毒性基准数据集上,比之前的基线方法提高了3.01%,而多任务学习方法比已经超过这些基线的单任务学习框架进一步提高了1.44%的性能。此外,与文献一致的注意力可视化有助于提高预测建模的透明度。我们的方法有可能为科学家和临床医生提供一个更可解释和临床有意义的工具来评估全身毒性,最终支持更安全和更明智的药物开发过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fate-tox: fragment attention transformer for E(3)-equivariant multi-organ toxicity prediction

Toxicity is a critical hurdle in drug development, often causing the late-stage failure of promising compounds. Existing computational prediction models often focus on single-organ toxicity. However, avoiding toxicity of an organ, such as reducing gastrointestinal side effects, may inadvertently lead to toxicity in another organ, as seen in the real case of rofecoxib, which was withdrawn due to increased cardiovascular risks. Thus, simultaneous prediction of multi-organ toxicity is a desirable but challenging task. The main challenges are (1) the variability of substructures that contribute to toxicity of different organs, (2) insufficient power of molecular representations in diverse perspectives, and (3) explainability of prediction results especially in terms of substructures or potential toxicophores. To address these challenges with multiple strategies, we developed FATE-Tox, a novel multi-view deep learning framework for multi-organ toxicity prediction. For variability of substructures, we used three fragmentation methods such as BRICS, Bemis-Murcko scaffolds, and RDKit Functional Groups to formulate fragment-level graphs so that diverse substructures can be used to identify toxicity for different organs. For insufficient power of molecular representations, we used molecular representations in both 2D and 3D perspectives. For explainability, our fragment attention transformer identifies potential 3D toxicophores using attention coefficients.

Scientific contribution: Our framework achieved significant improvements in prediction performance, with up to 3.01% gains over prior baseline methods on toxicity benchmark datasets from MoleculeNet (BBBP, SIDER, ClinTox) and TDC (DILI, Skin Reaction, Carcinogens, and hERG), while the multi-task learning approach further enhanced performance by up to 1.44% compared to the single-task learning framework that had already surpassed these baselines. Additionally, attention visualization aligning with literature contributes to greater transparency in predictive modeling. Our approach has the potential to provide scientists and clinicians with a more interpretable and clinically meaningful tool to assess systemic toxicity, ultimately supporting safer and more informed drug development processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信