在卡鲁扎-克莱因引力中被巨大矢量场包围的黑洞

IF 4.2 2区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
Kimet Jusufi, Ankit Anand, Sara Saghafi, B. Cuadros-Melgar, Kourosh Nozari
{"title":"在卡鲁扎-克莱因引力中被巨大矢量场包围的黑洞","authors":"Kimet Jusufi,&nbsp;Ankit Anand,&nbsp;Sara Saghafi,&nbsp;B. Cuadros-Melgar,&nbsp;Kourosh Nozari","doi":"10.1140/epjc/s10052-025-14253-3","DOIUrl":null,"url":null,"abstract":"<div><p>We present an exact black hole solution surrounded by massive vector fields predicted by Kaluza–Klein (KK) gravity. KK gravity in four dimensions (4D) is of particular interest, as it predicts a tower of particle states, including gravitons with spin-0 and spin-1 components, in addition to the massless spin-2 gravitons of general relativity. The extra degrees of freedom in the gravitational sector modify the law of gravity, allowing the theory to explain the effects attributed to dark matter in the universe. In this paper, we construct a black hole solution surrounded by massive spin-1 gravitons within KK theory. In addition to the influence of the massive vector fields, we incorporate an interaction term between the black hole and the massive vector field. The black hole solution is affected by the mass of the spin-1 graviton and an additional parameter that encodes corrections to Newton’s constant, as well as the coupling between the massive vector field and the black hole mass. We find that the coupling between the massive vector field and the black hole mimics the effect of an electric charge. To this end, we investigate the accretion disk, quasinormal modes (QNMs), and the stability of the black hole spacetime. Finally, we use Event Horizon Telescope (EHT) observations of Sgr A* to constrain the black hole parameters.\n</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14253-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Black holes surrounded by massive vector fields in Kaluza–Klein gravity\",\"authors\":\"Kimet Jusufi,&nbsp;Ankit Anand,&nbsp;Sara Saghafi,&nbsp;B. Cuadros-Melgar,&nbsp;Kourosh Nozari\",\"doi\":\"10.1140/epjc/s10052-025-14253-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present an exact black hole solution surrounded by massive vector fields predicted by Kaluza–Klein (KK) gravity. KK gravity in four dimensions (4D) is of particular interest, as it predicts a tower of particle states, including gravitons with spin-0 and spin-1 components, in addition to the massless spin-2 gravitons of general relativity. The extra degrees of freedom in the gravitational sector modify the law of gravity, allowing the theory to explain the effects attributed to dark matter in the universe. In this paper, we construct a black hole solution surrounded by massive spin-1 gravitons within KK theory. In addition to the influence of the massive vector fields, we incorporate an interaction term between the black hole and the massive vector field. The black hole solution is affected by the mass of the spin-1 graviton and an additional parameter that encodes corrections to Newton’s constant, as well as the coupling between the massive vector field and the black hole mass. We find that the coupling between the massive vector field and the black hole mimics the effect of an electric charge. To this end, we investigate the accretion disk, quasinormal modes (QNMs), and the stability of the black hole spacetime. Finally, we use Event Horizon Telescope (EHT) observations of Sgr A* to constrain the black hole parameters.\\n</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"85 5\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14253-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-025-14253-3\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14253-3","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个由Kaluza-Klein (KK)引力预测的被大质量矢量场包围的精确黑洞解。四维(4D)的KK引力是特别有趣的,因为它预测了一个粒子态塔,包括自旋为0和自旋为1的引力子,以及广义相对论中自旋为2的无质量引力子。引力部分的额外自由度修改了引力定律,使该理论能够解释宇宙中暗物质的效应。本文在KK理论中构造了一个被大质量自旋为1的引力子包围的黑洞解。除了质量矢量场的影响外,我们还纳入了黑洞与质量矢量场之间的相互作用项。黑洞解受到自旋为1的引力子的质量和一个额外的参数的影响,该参数对牛顿常数进行了修正,以及质量矢量场和黑洞质量之间的耦合。我们发现质量矢量场与黑洞之间的耦合模拟了电荷的效应。为此,我们研究了吸积盘、准正态模式(QNMs)和黑洞时空的稳定性。最后,我们利用事件视界望远镜(EHT)对Sgr A*的观测来约束黑洞参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Black holes surrounded by massive vector fields in Kaluza–Klein gravity

We present an exact black hole solution surrounded by massive vector fields predicted by Kaluza–Klein (KK) gravity. KK gravity in four dimensions (4D) is of particular interest, as it predicts a tower of particle states, including gravitons with spin-0 and spin-1 components, in addition to the massless spin-2 gravitons of general relativity. The extra degrees of freedom in the gravitational sector modify the law of gravity, allowing the theory to explain the effects attributed to dark matter in the universe. In this paper, we construct a black hole solution surrounded by massive spin-1 gravitons within KK theory. In addition to the influence of the massive vector fields, we incorporate an interaction term between the black hole and the massive vector field. The black hole solution is affected by the mass of the spin-1 graviton and an additional parameter that encodes corrections to Newton’s constant, as well as the coupling between the massive vector field and the black hole mass. We find that the coupling between the massive vector field and the black hole mimics the effect of an electric charge. To this end, we investigate the accretion disk, quasinormal modes (QNMs), and the stability of the black hole spacetime. Finally, we use Event Horizon Telescope (EHT) observations of Sgr A* to constrain the black hole parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal C
The European Physical Journal C 物理-物理:粒子与场物理
CiteScore
8.10
自引率
15.90%
发文量
1008
审稿时长
2-4 weeks
期刊介绍: Experimental Physics I: Accelerator Based High-Energy Physics Hadron and lepton collider physics Lepton-nucleon scattering High-energy nuclear reactions Standard model precision tests Search for new physics beyond the standard model Heavy flavour physics Neutrino properties Particle detector developments Computational methods and analysis tools Experimental Physics II: Astroparticle Physics Dark matter searches High-energy cosmic rays Double beta decay Long baseline neutrino experiments Neutrino astronomy Axions and other weakly interacting light particles Gravitational waves and observational cosmology Particle detector developments Computational methods and analysis tools Theoretical Physics I: Phenomenology of the Standard Model and Beyond Electroweak interactions Quantum chromo dynamics Heavy quark physics and quark flavour mixing Neutrino physics Phenomenology of astro- and cosmoparticle physics Meson spectroscopy and non-perturbative QCD Low-energy effective field theories Lattice field theory High temperature QCD and heavy ion physics Phenomenology of supersymmetric extensions of the SM Phenomenology of non-supersymmetric extensions of the SM Model building and alternative models of electroweak symmetry breaking Flavour physics beyond the SM Computational algorithms and tools...etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信