光滑域上层势的Carleman分解

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Kazunori Ando, Hyeonbae Kang, Yoshihisa Miyanishi, Mihai Putinar
{"title":"光滑域上层势的Carleman分解","authors":"Kazunori Ando,&nbsp;Hyeonbae Kang,&nbsp;Yoshihisa Miyanishi,&nbsp;Mihai Putinar","doi":"10.1007/s00205-025-02106-y","DOIUrl":null,"url":null,"abstract":"<div><p>One of the unexplored benefits of studying layer potentials on smooth, closed hypersurfaces of Euclidean space is the factorization of the Neumann-Poincaré operator into a product of two self-adjoint transforms. Resurrecting some pertinent indications of Carleman and M. G. Krein, we exploit this grossly overlooked structure by confining the spectral analysis of the Neumann-Poincaré operator to the amenable <span>\\(L^2\\)</span>-space setting, rather than bouncing back and forth the computations between Sobolev spaces of negative or positive fractional order. An enhanced, fresh new look at symmetrizable linear transforms enters into the picture in the company of geometric/microlocal analysis techniques. The outcome is manyfold, complementing recent advances on the theory of layer potentials, in the smooth boundary setting.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-025-02106-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Carleman Factorization of Layer Potentials on Smooth Domains\",\"authors\":\"Kazunori Ando,&nbsp;Hyeonbae Kang,&nbsp;Yoshihisa Miyanishi,&nbsp;Mihai Putinar\",\"doi\":\"10.1007/s00205-025-02106-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the unexplored benefits of studying layer potentials on smooth, closed hypersurfaces of Euclidean space is the factorization of the Neumann-Poincaré operator into a product of two self-adjoint transforms. Resurrecting some pertinent indications of Carleman and M. G. Krein, we exploit this grossly overlooked structure by confining the spectral analysis of the Neumann-Poincaré operator to the amenable <span>\\\\(L^2\\\\)</span>-space setting, rather than bouncing back and forth the computations between Sobolev spaces of negative or positive fractional order. An enhanced, fresh new look at symmetrizable linear transforms enters into the picture in the company of geometric/microlocal analysis techniques. The outcome is manyfold, complementing recent advances on the theory of layer potentials, in the smooth boundary setting.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"249 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-025-02106-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-025-02106-y\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02106-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究欧几里得空间的光滑、封闭超曲面上的层势的一个未被开发的好处是将neumann - poincar算子分解成两个自伴随变换的乘积。我们重新利用Carleman和M. G. Krein的一些相关指示,将neumann - poincar算子的谱分析限制在可接受的\(L^2\) -空间设置中,而不是在负分数阶或正分数阶的Sobolev空间之间来回跳跃,从而利用了这个被严重忽视的结构。在几何/微局部分析技术的陪同下,对对称线性变换的增强,全新的看法进入了画面。结果是多方面的,补充了最近在光滑边界设置中的层势理论的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carleman Factorization of Layer Potentials on Smooth Domains

One of the unexplored benefits of studying layer potentials on smooth, closed hypersurfaces of Euclidean space is the factorization of the Neumann-Poincaré operator into a product of two self-adjoint transforms. Resurrecting some pertinent indications of Carleman and M. G. Krein, we exploit this grossly overlooked structure by confining the spectral analysis of the Neumann-Poincaré operator to the amenable \(L^2\)-space setting, rather than bouncing back and forth the computations between Sobolev spaces of negative or positive fractional order. An enhanced, fresh new look at symmetrizable linear transforms enters into the picture in the company of geometric/microlocal analysis techniques. The outcome is manyfold, complementing recent advances on the theory of layer potentials, in the smooth boundary setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信