Kazunori Ando, Hyeonbae Kang, Yoshihisa Miyanishi, Mihai Putinar
{"title":"光滑域上层势的Carleman分解","authors":"Kazunori Ando, Hyeonbae Kang, Yoshihisa Miyanishi, Mihai Putinar","doi":"10.1007/s00205-025-02106-y","DOIUrl":null,"url":null,"abstract":"<div><p>One of the unexplored benefits of studying layer potentials on smooth, closed hypersurfaces of Euclidean space is the factorization of the Neumann-Poincaré operator into a product of two self-adjoint transforms. Resurrecting some pertinent indications of Carleman and M. G. Krein, we exploit this grossly overlooked structure by confining the spectral analysis of the Neumann-Poincaré operator to the amenable <span>\\(L^2\\)</span>-space setting, rather than bouncing back and forth the computations between Sobolev spaces of negative or positive fractional order. An enhanced, fresh new look at symmetrizable linear transforms enters into the picture in the company of geometric/microlocal analysis techniques. The outcome is manyfold, complementing recent advances on the theory of layer potentials, in the smooth boundary setting.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-025-02106-y.pdf","citationCount":"0","resultStr":"{\"title\":\"Carleman Factorization of Layer Potentials on Smooth Domains\",\"authors\":\"Kazunori Ando, Hyeonbae Kang, Yoshihisa Miyanishi, Mihai Putinar\",\"doi\":\"10.1007/s00205-025-02106-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the unexplored benefits of studying layer potentials on smooth, closed hypersurfaces of Euclidean space is the factorization of the Neumann-Poincaré operator into a product of two self-adjoint transforms. Resurrecting some pertinent indications of Carleman and M. G. Krein, we exploit this grossly overlooked structure by confining the spectral analysis of the Neumann-Poincaré operator to the amenable <span>\\\\(L^2\\\\)</span>-space setting, rather than bouncing back and forth the computations between Sobolev spaces of negative or positive fractional order. An enhanced, fresh new look at symmetrizable linear transforms enters into the picture in the company of geometric/microlocal analysis techniques. The outcome is manyfold, complementing recent advances on the theory of layer potentials, in the smooth boundary setting.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"249 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-025-02106-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-025-02106-y\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02106-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
研究欧几里得空间的光滑、封闭超曲面上的层势的一个未被开发的好处是将neumann - poincar算子分解成两个自伴随变换的乘积。我们重新利用Carleman和M. G. Krein的一些相关指示,将neumann - poincar算子的谱分析限制在可接受的\(L^2\) -空间设置中,而不是在负分数阶或正分数阶的Sobolev空间之间来回跳跃,从而利用了这个被严重忽视的结构。在几何/微局部分析技术的陪同下,对对称线性变换的增强,全新的看法进入了画面。结果是多方面的,补充了最近在光滑边界设置中的层势理论的进展。
Carleman Factorization of Layer Potentials on Smooth Domains
One of the unexplored benefits of studying layer potentials on smooth, closed hypersurfaces of Euclidean space is the factorization of the Neumann-Poincaré operator into a product of two self-adjoint transforms. Resurrecting some pertinent indications of Carleman and M. G. Krein, we exploit this grossly overlooked structure by confining the spectral analysis of the Neumann-Poincaré operator to the amenable \(L^2\)-space setting, rather than bouncing back and forth the computations between Sobolev spaces of negative or positive fractional order. An enhanced, fresh new look at symmetrizable linear transforms enters into the picture in the company of geometric/microlocal analysis techniques. The outcome is manyfold, complementing recent advances on the theory of layer potentials, in the smooth boundary setting.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.