通过线粒体复合物- 1抑制模拟癫痫相关阿尔茨海默病:神经化学和治疗观点

IF 3.7 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Arvinder Kaur, Rajesh Kumar Goel
{"title":"通过线粒体复合物- 1抑制模拟癫痫相关阿尔茨海默病:神经化学和治疗观点","authors":"Arvinder Kaur,&nbsp;Rajesh Kumar Goel","doi":"10.1007/s11064-025-04413-y","DOIUrl":null,"url":null,"abstract":"<div><p>Alzheimer’s disease (AD) is comorbid condition in epilepsy. Mitochondrial dysfunction serves as a common disease mechanism. This study aimed to develop a new mouse of epilepsy-associated AD by inhibiting mitochondrial complex-I and exploring neurochemistry to identify therapeutic targets. Swiss albino mice were divided into naïve, corneal kindled (CK), and rotenone corneal kindled (RCK) groups. CK underwent epileptogenesis by using 6 Hz corneal kindling model (15 mA, 20 V, 6-Hz, 3 s for 15 days), while RCK underwent both epileptogenesis and mitochondrial dysfunction via rotenone administration (2.5 mg/kg, i.p daily). RCK mice exhibited generalised tonic-clonic seizures, cognitive deficits, oxidative stress, and Aβ/tau deposition. Neurochemical analysis showed increased glutamate, kynurenine, and reduced GABA, taurine, monoamines, antioxidants, and acetylcholinesterase activity. The RCK model replicates construct and face validity of both epilepsy and AD, may serve as a new model to investigate shared disease mechanisms and associated altered neurotransmitter as therapeutic approach.</p></div>","PeriodicalId":719,"journal":{"name":"Neurochemical Research","volume":"50 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling Epilepsy Associated Alzheimer’s Disease Through Mitochondrial Complex-I Inhibition: Neurochemical and Therapeutic Perspectives\",\"authors\":\"Arvinder Kaur,&nbsp;Rajesh Kumar Goel\",\"doi\":\"10.1007/s11064-025-04413-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Alzheimer’s disease (AD) is comorbid condition in epilepsy. Mitochondrial dysfunction serves as a common disease mechanism. This study aimed to develop a new mouse of epilepsy-associated AD by inhibiting mitochondrial complex-I and exploring neurochemistry to identify therapeutic targets. Swiss albino mice were divided into naïve, corneal kindled (CK), and rotenone corneal kindled (RCK) groups. CK underwent epileptogenesis by using 6 Hz corneal kindling model (15 mA, 20 V, 6-Hz, 3 s for 15 days), while RCK underwent both epileptogenesis and mitochondrial dysfunction via rotenone administration (2.5 mg/kg, i.p daily). RCK mice exhibited generalised tonic-clonic seizures, cognitive deficits, oxidative stress, and Aβ/tau deposition. Neurochemical analysis showed increased glutamate, kynurenine, and reduced GABA, taurine, monoamines, antioxidants, and acetylcholinesterase activity. The RCK model replicates construct and face validity of both epilepsy and AD, may serve as a new model to investigate shared disease mechanisms and associated altered neurotransmitter as therapeutic approach.</p></div>\",\"PeriodicalId\":719,\"journal\":{\"name\":\"Neurochemical Research\",\"volume\":\"50 3\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurochemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11064-025-04413-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurochemical Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11064-025-04413-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)是癫痫的合并症。线粒体功能障碍是一种常见的疾病机制。本研究旨在通过抑制线粒体复合体- 1和探索神经化学来确定治疗靶点来开发一种新的癫痫相关AD小鼠。将瑞士白化小鼠分为naïve、角膜点燃(CK)组和鱼烯酮角膜点燃(RCK)组。对照组采用6 Hz角膜点燃模型(15 mA, 20 V, 6 Hz, 3 s, 15 d)致痫,对照组采用鱼藤酮(2.5 mg/kg,每日1次)致痫和线粒体功能障碍。RCK小鼠表现出全身性强直阵挛性发作、认知缺陷、氧化应激和Aβ/tau沉积。神经化学分析显示谷氨酸、犬尿氨酸增加,氨基丁酸、牛磺酸、单胺、抗氧化剂和乙酰胆碱酯酶活性降低。RCK模型重复了癫痫和AD的结构和面效,可以作为研究共同疾病机制和相关神经递质改变作为治疗方法的新模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling Epilepsy Associated Alzheimer’s Disease Through Mitochondrial Complex-I Inhibition: Neurochemical and Therapeutic Perspectives

Alzheimer’s disease (AD) is comorbid condition in epilepsy. Mitochondrial dysfunction serves as a common disease mechanism. This study aimed to develop a new mouse of epilepsy-associated AD by inhibiting mitochondrial complex-I and exploring neurochemistry to identify therapeutic targets. Swiss albino mice were divided into naïve, corneal kindled (CK), and rotenone corneal kindled (RCK) groups. CK underwent epileptogenesis by using 6 Hz corneal kindling model (15 mA, 20 V, 6-Hz, 3 s for 15 days), while RCK underwent both epileptogenesis and mitochondrial dysfunction via rotenone administration (2.5 mg/kg, i.p daily). RCK mice exhibited generalised tonic-clonic seizures, cognitive deficits, oxidative stress, and Aβ/tau deposition. Neurochemical analysis showed increased glutamate, kynurenine, and reduced GABA, taurine, monoamines, antioxidants, and acetylcholinesterase activity. The RCK model replicates construct and face validity of both epilepsy and AD, may serve as a new model to investigate shared disease mechanisms and associated altered neurotransmitter as therapeutic approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurochemical Research
Neurochemical Research 医学-神经科学
CiteScore
7.70
自引率
2.30%
发文量
320
审稿时长
6 months
期刊介绍: Neurochemical Research is devoted to the rapid publication of studies that use neurochemical methodology in research on nervous system structure and function. The journal publishes original reports of experimental and clinical research results, perceptive reviews of significant problem areas in the neurosciences, brief comments of a methodological or interpretive nature, and research summaries conducted by leading scientists whose works are not readily available in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信