{"title":"某选定星系子系统运动学的4D建模","authors":"I. I. Nikiforov","doi":"10.1134/S0038094624601786","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—A four-dimensional method of optimization of spatial-kinematic models of subsystems of objects of the Galaxy based on the principle of maximum likelihood has been proposed, taking into account the measurement and natural (dynamic) uncertainty of 3D velocities and random errors of heliocentric distances (in this case, trigonometric parallaxes). The method has been tested on masers in the high-mass star-forming regions (HMSFRs). Based on the data on these objects, new estimates of the fundamental parameters of the Galaxy were obtained, free from systematic biases due to parallax errors, in particular, the distance from the Sun to the center of the Galaxy <i>R</i><sub>0</sub> = 7.88 ± 0.12 kpc, the angular azimuthal velocity of the Sun <span>\\({{\\omega }_{ \\odot }}\\)</span> = 30.40 ± 0.20 km/s/kpc, the linear azimuthal velocity of the Sun <span>\\({{\\theta }_{ \\odot }}\\)</span> = 239.6 ± 4.0 km/s/kpc.</p>","PeriodicalId":778,"journal":{"name":"Solar System Research","volume":"59 4","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4D Modeling of Kinematics of a Selected Galaxy Subsystem\",\"authors\":\"I. I. Nikiforov\",\"doi\":\"10.1134/S0038094624601786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Abstract</b>—A four-dimensional method of optimization of spatial-kinematic models of subsystems of objects of the Galaxy based on the principle of maximum likelihood has been proposed, taking into account the measurement and natural (dynamic) uncertainty of 3D velocities and random errors of heliocentric distances (in this case, trigonometric parallaxes). The method has been tested on masers in the high-mass star-forming regions (HMSFRs). Based on the data on these objects, new estimates of the fundamental parameters of the Galaxy were obtained, free from systematic biases due to parallax errors, in particular, the distance from the Sun to the center of the Galaxy <i>R</i><sub>0</sub> = 7.88 ± 0.12 kpc, the angular azimuthal velocity of the Sun <span>\\\\({{\\\\omega }_{ \\\\odot }}\\\\)</span> = 30.40 ± 0.20 km/s/kpc, the linear azimuthal velocity of the Sun <span>\\\\({{\\\\theta }_{ \\\\odot }}\\\\)</span> = 239.6 ± 4.0 km/s/kpc.</p>\",\"PeriodicalId\":778,\"journal\":{\"name\":\"Solar System Research\",\"volume\":\"59 4\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar System Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0038094624601786\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar System Research","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S0038094624601786","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
4D Modeling of Kinematics of a Selected Galaxy Subsystem
Abstract—A four-dimensional method of optimization of spatial-kinematic models of subsystems of objects of the Galaxy based on the principle of maximum likelihood has been proposed, taking into account the measurement and natural (dynamic) uncertainty of 3D velocities and random errors of heliocentric distances (in this case, trigonometric parallaxes). The method has been tested on masers in the high-mass star-forming regions (HMSFRs). Based on the data on these objects, new estimates of the fundamental parameters of the Galaxy were obtained, free from systematic biases due to parallax errors, in particular, the distance from the Sun to the center of the Galaxy R0 = 7.88 ± 0.12 kpc, the angular azimuthal velocity of the Sun \({{\omega }_{ \odot }}\) = 30.40 ± 0.20 km/s/kpc, the linear azimuthal velocity of the Sun \({{\theta }_{ \odot }}\) = 239.6 ± 4.0 km/s/kpc.
期刊介绍:
Solar System Research publishes articles concerning the bodies of the Solar System, i.e., planets and their satellites, asteroids, comets, meteoric substances, and cosmic dust. The articles consider physics, dynamics and composition of these bodies, and techniques of their exploration. The journal addresses the problems of comparative planetology, physics of the planetary atmospheres and interiors, cosmochemistry, as well as planetary plasma environment and heliosphere, specifically those related to solar-planetary interactions. Attention is paid to studies of exoplanets and complex problems of the origin and evolution of planetary systems including the solar system, based on the results of astronomical observations, laboratory studies of meteorites, relevant theoretical approaches and mathematical modeling. Alongside with the original results of experimental and theoretical studies, the journal publishes scientific reviews in the field of planetary exploration, and notes on observational results.