算法反合成中的多样性生成与完整性保护

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Florian Mrugalla, Christopher Franz, Yannic Alber, Georg Mogk, Martín Villalba, Thomas Mrziglod, Kevin Schewior
{"title":"算法反合成中的多样性生成与完整性保护","authors":"Florian Mrugalla,&nbsp;Christopher Franz,&nbsp;Yannic Alber,&nbsp;Georg Mogk,&nbsp;Martín Villalba,&nbsp;Thomas Mrziglod,&nbsp;Kevin Schewior","doi":"10.1186/s13321-025-00981-x","DOIUrl":null,"url":null,"abstract":"<p>Chemical synthesis planning has considerably benefited from advances in the field of machine learning. Neural networks can reliably and accurately predict reactions leading to a given, possibly complex, molecule. In this work we focus on algorithms for assembling such predictions to a full synthesis plan that, starting from simple building blocks, produces a given target molecule, a procedure known as retrosynthesis. Objective functions for this task are hard to define and context-specific. In order to generate a diverse set of synthesis plans for chemists to select from, we capture the concept of diversity in a novel chemical diversity score (CDS). Our experiments show that our algorithm outperforms the algorithm predominantly employed in this domain, Monte-Carlo Tree Search, with respect to diversity in terms of our score as well as time efficiency.</p><p>We adapt Depth-First Proof-Number Search (DFPN) (Please refer to https://github.com/Bayer-Group/bayer-retrosynthesis-search for the accompanying source code.) and its variants, which have been applied to retrosynthesis before, to produce a set of solutions, with an explicit focus on diversity. We also make progress on understanding DFPN in terms of completeness, i.e., the ability to find a solution whenever there exists one. DFPN is known to be incomplete, for which we provide a much cleaner example, but we also show that it is complete when reinforced with a threshold-controlling routine from the literature.</p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00981-x","citationCount":"0","resultStr":"{\"title\":\"Generating diversity and securing completeness in algorithmic retrosynthesis\",\"authors\":\"Florian Mrugalla,&nbsp;Christopher Franz,&nbsp;Yannic Alber,&nbsp;Georg Mogk,&nbsp;Martín Villalba,&nbsp;Thomas Mrziglod,&nbsp;Kevin Schewior\",\"doi\":\"10.1186/s13321-025-00981-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chemical synthesis planning has considerably benefited from advances in the field of machine learning. Neural networks can reliably and accurately predict reactions leading to a given, possibly complex, molecule. In this work we focus on algorithms for assembling such predictions to a full synthesis plan that, starting from simple building blocks, produces a given target molecule, a procedure known as retrosynthesis. Objective functions for this task are hard to define and context-specific. In order to generate a diverse set of synthesis plans for chemists to select from, we capture the concept of diversity in a novel chemical diversity score (CDS). Our experiments show that our algorithm outperforms the algorithm predominantly employed in this domain, Monte-Carlo Tree Search, with respect to diversity in terms of our score as well as time efficiency.</p><p>We adapt Depth-First Proof-Number Search (DFPN) (Please refer to https://github.com/Bayer-Group/bayer-retrosynthesis-search for the accompanying source code.) and its variants, which have been applied to retrosynthesis before, to produce a set of solutions, with an explicit focus on diversity. We also make progress on understanding DFPN in terms of completeness, i.e., the ability to find a solution whenever there exists one. DFPN is known to be incomplete, for which we provide a much cleaner example, but we also show that it is complete when reinforced with a threshold-controlling routine from the literature.</p>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00981-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-025-00981-x\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-00981-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

化学合成计划在很大程度上得益于机器学习领域的进步。神经网络可以可靠而准确地预测导致给定的、可能复杂的分子的反应。在这项工作中,我们将重点放在将这些预测组合到一个完整的合成计划的算法上,该计划从简单的构建块开始,产生给定的目标分子,这一过程被称为反合成。这一任务的目标函数很难定义,并且与上下文相关。为了生成一组不同的合成计划供化学家选择,我们在一个新的化学多样性评分(CDS)中捕捉了多样性的概念。我们的实验表明,我们的算法在得分和时间效率方面的多样性方面优于该领域主要采用的算法蒙特卡罗树搜索。我们采用深度优先证明数搜索(DFPN)(请参阅https://github.com/Bayer-Group/bayer-retrosynthesis-search获取随附的源代码)及其变体,这些变体之前已应用于反合成,以产生一组解决方案,明确关注多样性。我们在理解DFPN的完备性方面也取得了进展,即无论何时存在一个解,都能找到一个解。众所周知,DFPN是不完整的,为此我们提供了一个更清晰的例子,但我们也表明,当使用文献中的阈值控制例程进行强化时,它是完整的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating diversity and securing completeness in algorithmic retrosynthesis

Chemical synthesis planning has considerably benefited from advances in the field of machine learning. Neural networks can reliably and accurately predict reactions leading to a given, possibly complex, molecule. In this work we focus on algorithms for assembling such predictions to a full synthesis plan that, starting from simple building blocks, produces a given target molecule, a procedure known as retrosynthesis. Objective functions for this task are hard to define and context-specific. In order to generate a diverse set of synthesis plans for chemists to select from, we capture the concept of diversity in a novel chemical diversity score (CDS). Our experiments show that our algorithm outperforms the algorithm predominantly employed in this domain, Monte-Carlo Tree Search, with respect to diversity in terms of our score as well as time efficiency.

We adapt Depth-First Proof-Number Search (DFPN) (Please refer to https://github.com/Bayer-Group/bayer-retrosynthesis-search for the accompanying source code.) and its variants, which have been applied to retrosynthesis before, to produce a set of solutions, with an explicit focus on diversity. We also make progress on understanding DFPN in terms of completeness, i.e., the ability to find a solution whenever there exists one. DFPN is known to be incomplete, for which we provide a much cleaner example, but we also show that it is complete when reinforced with a threshold-controlling routine from the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信