在STEM-EELS中构建交互式人在环自动化实验(hAE)的工作流程

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Utkarsh Pratiush, Kevin M. Roccapriore, Yongtao Liu, Gerd Duscher, Maxim Ziatdinov and Sergei V. Kalinin
{"title":"在STEM-EELS中构建交互式人在环自动化实验(hAE)的工作流程","authors":"Utkarsh Pratiush, Kevin M. Roccapriore, Yongtao Liu, Gerd Duscher, Maxim Ziatdinov and Sergei V. Kalinin","doi":"10.1039/D5DD00033E","DOIUrl":null,"url":null,"abstract":"<p >Exploring the structural, chemical, and physical properties of matter on the nano- and atomic scales has become possible with the recent advances in aberration-corrected electron energy-loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM). However, the current paradigm of STEM-EELS relies on the classical rectangular grid sampling, in which all surface regions are assumed to be of equal <em>a priori</em> interest. However, this is typically not the case for real-world scenarios, where phenomena of interest are concentrated in a small number of spatial locations, such as interfaces, structural and topological defects, and multi-phase inclusions. One of the foundational problems is the discovery of nanometer- or atomic-scale structures having specific signatures in EELS spectra. Herein, we systematically explore the hyperparameters controlling deep kernel learning (DKL) discovery workflows for STEM-EELS and identify the role of the local structural descriptors and acquisition functions in experiment progression. In agreement with the actual experiment, we observe that for certain parameter combinations the experiment path can be trapped in the local minima. We demonstrate the approaches for monitoring the automated experiment in the real and feature space of the system and knowledge acquisition of the DKL model. Based on these, we construct intervention strategies defining the human-in-the-loop automated experiment (hAE). This approach can be further extended to other techniques including 4D STEM and other forms of spectroscopic imaging. The hAE library is available on Github at https://github.com/utkarshp1161/hAE/tree/main/hAE.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 5","pages":" 1323-1338"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00033e?page=search","citationCount":"0","resultStr":"{\"title\":\"Building workflows for an interactive human-in-the-loop automated experiment (hAE) in STEM-EELS†\",\"authors\":\"Utkarsh Pratiush, Kevin M. Roccapriore, Yongtao Liu, Gerd Duscher, Maxim Ziatdinov and Sergei V. Kalinin\",\"doi\":\"10.1039/D5DD00033E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Exploring the structural, chemical, and physical properties of matter on the nano- and atomic scales has become possible with the recent advances in aberration-corrected electron energy-loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM). However, the current paradigm of STEM-EELS relies on the classical rectangular grid sampling, in which all surface regions are assumed to be of equal <em>a priori</em> interest. However, this is typically not the case for real-world scenarios, where phenomena of interest are concentrated in a small number of spatial locations, such as interfaces, structural and topological defects, and multi-phase inclusions. One of the foundational problems is the discovery of nanometer- or atomic-scale structures having specific signatures in EELS spectra. Herein, we systematically explore the hyperparameters controlling deep kernel learning (DKL) discovery workflows for STEM-EELS and identify the role of the local structural descriptors and acquisition functions in experiment progression. In agreement with the actual experiment, we observe that for certain parameter combinations the experiment path can be trapped in the local minima. We demonstrate the approaches for monitoring the automated experiment in the real and feature space of the system and knowledge acquisition of the DKL model. Based on these, we construct intervention strategies defining the human-in-the-loop automated experiment (hAE). This approach can be further extended to other techniques including 4D STEM and other forms of spectroscopic imaging. The hAE library is available on Github at https://github.com/utkarshp1161/hAE/tree/main/hAE.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 5\",\"pages\":\" 1323-1338\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d5dd00033e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00033e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d5dd00033e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着扫描透射电子显微镜(STEM)中像差校正电子能量损失谱(EELS)的最新进展,在纳米和原子尺度上探索物质的结构、化学和物理性质成为可能。然而,目前STEM-EELS的范例依赖于经典的矩形网格采样,其中假设所有表面区域具有相同的先验兴趣。然而,对于现实世界的场景来说,通常不是这样,在现实世界中,感兴趣的现象集中在少数空间位置,例如界面、结构和拓扑缺陷以及多相夹杂物。其中一个基本问题是发现在EELS光谱中具有特定特征的纳米或原子尺度结构。在此,我们系统地探索了控制STEM-EELS深度核学习(DKL)发现工作流程的超参数,并确定了局部结构描述符和获取函数在实验进展中的作用。与实际实验结果一致,我们观察到对于某些参数组合,实验路径可以被困在局部极小值中。我们展示了在系统的真实空间和特征空间中监控自动化实验的方法以及DKL模型的知识获取方法。在此基础上,我们构建了干预策略,定义了人在环自动化实验(hAE)。这种方法可以进一步扩展到其他技术,包括4D STEM和其他形式的光谱成像。hAE库可在Github上通过https://github.com/utkarshp1161/hAE/tree/main/hAE获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building workflows for an interactive human-in-the-loop automated experiment (hAE) in STEM-EELS†

Exploring the structural, chemical, and physical properties of matter on the nano- and atomic scales has become possible with the recent advances in aberration-corrected electron energy-loss spectroscopy (EELS) in scanning transmission electron microscopy (STEM). However, the current paradigm of STEM-EELS relies on the classical rectangular grid sampling, in which all surface regions are assumed to be of equal a priori interest. However, this is typically not the case for real-world scenarios, where phenomena of interest are concentrated in a small number of spatial locations, such as interfaces, structural and topological defects, and multi-phase inclusions. One of the foundational problems is the discovery of nanometer- or atomic-scale structures having specific signatures in EELS spectra. Herein, we systematically explore the hyperparameters controlling deep kernel learning (DKL) discovery workflows for STEM-EELS and identify the role of the local structural descriptors and acquisition functions in experiment progression. In agreement with the actual experiment, we observe that for certain parameter combinations the experiment path can be trapped in the local minima. We demonstrate the approaches for monitoring the automated experiment in the real and feature space of the system and knowledge acquisition of the DKL model. Based on these, we construct intervention strategies defining the human-in-the-loop automated experiment (hAE). This approach can be further extended to other techniques including 4D STEM and other forms of spectroscopic imaging. The hAE library is available on Github at https://github.com/utkarshp1161/hAE/tree/main/hAE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信