{"title":"边听边看:视听事件定位的跨模态对比学习","authors":"Chao Sun;Min Chen;Chuanbo Zhu;Sheng Zhang;Ping Lu;Jincai Chen","doi":"10.1109/TMM.2025.3535359","DOIUrl":null,"url":null,"abstract":"In real-world physiological and psychological scenarios, there often exists a robust complementary correlation between audio and visual signals. Audio-Visual Event Localization (AVEL) aims to identify segments with Audio-Visual Events (AVEs) that contain both audio and visual tracks in unconstrained videos. Prior studies have predominantly focused on audio-visual cross-modal fusion methods, overlooking the fine-grained exploration of the cross-modal information fusion mechanism. Moreover, due to the inherent heterogeneity of multi-modal data, inevitable new noise is introduced during the audio-visual fusion process. To address these challenges, we propose a novel Cross-modal Contrastive Learning Network (CCLN) for AVEL, comprising a backbone network and a branch network. In the backbone network, drawing inspiration from physiological theories of sensory integration, we elucidate the process of audio-visual information fusion, interaction, and integration from an information-flow perspective. Notably, the Self-constrained Bi-modal Interaction (SBI) module is a bi-modal attention structure integrated with audio-visual fusion information, and through gated processing of the audio-visual correlation matrix, it effectively captures inter-modal correlation. The Foreground Event Enhancement (FEE) module emphasizes the significance of event-level boundaries by elongating the distance between scene events during training through adaptive weights. Furthermore, we introduce weak video-level labels to constrain the cross-modal semantic alignment of audio-visual events and design a weakly supervised cross-modal contrastive learning loss (WCCL Loss) function, which enhances the quality of fusion representation in the dual-branch contrastive learning framework. Extensive experiments conducted on the AVE dataset for both fully supervised and weakly supervised event localization, as well as Cross-Modal Localization (CML) tasks, demonstrate the superior performance of our model compared to state-of-the-art approaches.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"27 ","pages":"2650-2665"},"PeriodicalIF":8.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Listen With Seeing: Cross-Modal Contrastive Learning for Audio-Visual Event Localization\",\"authors\":\"Chao Sun;Min Chen;Chuanbo Zhu;Sheng Zhang;Ping Lu;Jincai Chen\",\"doi\":\"10.1109/TMM.2025.3535359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In real-world physiological and psychological scenarios, there often exists a robust complementary correlation between audio and visual signals. Audio-Visual Event Localization (AVEL) aims to identify segments with Audio-Visual Events (AVEs) that contain both audio and visual tracks in unconstrained videos. Prior studies have predominantly focused on audio-visual cross-modal fusion methods, overlooking the fine-grained exploration of the cross-modal information fusion mechanism. Moreover, due to the inherent heterogeneity of multi-modal data, inevitable new noise is introduced during the audio-visual fusion process. To address these challenges, we propose a novel Cross-modal Contrastive Learning Network (CCLN) for AVEL, comprising a backbone network and a branch network. In the backbone network, drawing inspiration from physiological theories of sensory integration, we elucidate the process of audio-visual information fusion, interaction, and integration from an information-flow perspective. Notably, the Self-constrained Bi-modal Interaction (SBI) module is a bi-modal attention structure integrated with audio-visual fusion information, and through gated processing of the audio-visual correlation matrix, it effectively captures inter-modal correlation. The Foreground Event Enhancement (FEE) module emphasizes the significance of event-level boundaries by elongating the distance between scene events during training through adaptive weights. Furthermore, we introduce weak video-level labels to constrain the cross-modal semantic alignment of audio-visual events and design a weakly supervised cross-modal contrastive learning loss (WCCL Loss) function, which enhances the quality of fusion representation in the dual-branch contrastive learning framework. Extensive experiments conducted on the AVE dataset for both fully supervised and weakly supervised event localization, as well as Cross-Modal Localization (CML) tasks, demonstrate the superior performance of our model compared to state-of-the-art approaches.\",\"PeriodicalId\":13273,\"journal\":{\"name\":\"IEEE Transactions on Multimedia\",\"volume\":\"27 \",\"pages\":\"2650-2665\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multimedia\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10856377/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10856377/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Listen With Seeing: Cross-Modal Contrastive Learning for Audio-Visual Event Localization
In real-world physiological and psychological scenarios, there often exists a robust complementary correlation between audio and visual signals. Audio-Visual Event Localization (AVEL) aims to identify segments with Audio-Visual Events (AVEs) that contain both audio and visual tracks in unconstrained videos. Prior studies have predominantly focused on audio-visual cross-modal fusion methods, overlooking the fine-grained exploration of the cross-modal information fusion mechanism. Moreover, due to the inherent heterogeneity of multi-modal data, inevitable new noise is introduced during the audio-visual fusion process. To address these challenges, we propose a novel Cross-modal Contrastive Learning Network (CCLN) for AVEL, comprising a backbone network and a branch network. In the backbone network, drawing inspiration from physiological theories of sensory integration, we elucidate the process of audio-visual information fusion, interaction, and integration from an information-flow perspective. Notably, the Self-constrained Bi-modal Interaction (SBI) module is a bi-modal attention structure integrated with audio-visual fusion information, and through gated processing of the audio-visual correlation matrix, it effectively captures inter-modal correlation. The Foreground Event Enhancement (FEE) module emphasizes the significance of event-level boundaries by elongating the distance between scene events during training through adaptive weights. Furthermore, we introduce weak video-level labels to constrain the cross-modal semantic alignment of audio-visual events and design a weakly supervised cross-modal contrastive learning loss (WCCL Loss) function, which enhances the quality of fusion representation in the dual-branch contrastive learning framework. Extensive experiments conducted on the AVE dataset for both fully supervised and weakly supervised event localization, as well as Cross-Modal Localization (CML) tasks, demonstrate the superior performance of our model compared to state-of-the-art approaches.
期刊介绍:
The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.