SCTNet:用于云检测的统计驱动模块的浅cnn -变压器网络

Weixing Liu;Bin Luo;Jun Liu;Han Nie;Xin Su
{"title":"SCTNet:用于云检测的统计驱动模块的浅cnn -变压器网络","authors":"Weixing Liu;Bin Luo;Jun Liu;Han Nie;Xin Su","doi":"10.1109/LGRS.2025.3561004","DOIUrl":null,"url":null,"abstract":"Existing cloud detection methods often rely on deep neural networks, leading to excessive computational overhead. To address this, we propose a shallow convolutional neural network (CNN)–Transformer hybrid architecture that limits the maximum downsampling rate to <inline-formula> <tex-math>$8\\times $ </tex-math></inline-formula>. This design preserves local details while effectively capturing global context through a lightweight Transformer branch. To enhance adaptability across diverse cloud scenes, we introduce two novel statistics-driven modules: statistics-adaptive convolution (SAC) and statistical mixing augmentation (SMA). SAC dynamically generates convolutional kernels based on input feature statistics, enabling adaptive feature extraction for varying cloud patterns. SMA improves model generalization by interpolating channel-wise statistics across training samples, increasing feature diversity. Experiments on four datasets show that the proposed method achieves state-of-the-art performance with 732 K parameters and 1G multiply-accumulate operations (MACs). Our code will be available at <uri>https://weix-liu.github.io/</uri> for further research.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SCTNet: A Shallow CNN–Transformer Network With Statistics-Driven Modules for Cloud Detection\",\"authors\":\"Weixing Liu;Bin Luo;Jun Liu;Han Nie;Xin Su\",\"doi\":\"10.1109/LGRS.2025.3561004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing cloud detection methods often rely on deep neural networks, leading to excessive computational overhead. To address this, we propose a shallow convolutional neural network (CNN)–Transformer hybrid architecture that limits the maximum downsampling rate to <inline-formula> <tex-math>$8\\\\times $ </tex-math></inline-formula>. This design preserves local details while effectively capturing global context through a lightweight Transformer branch. To enhance adaptability across diverse cloud scenes, we introduce two novel statistics-driven modules: statistics-adaptive convolution (SAC) and statistical mixing augmentation (SMA). SAC dynamically generates convolutional kernels based on input feature statistics, enabling adaptive feature extraction for varying cloud patterns. SMA improves model generalization by interpolating channel-wise statistics across training samples, increasing feature diversity. Experiments on four datasets show that the proposed method achieves state-of-the-art performance with 732 K parameters and 1G multiply-accumulate operations (MACs). Our code will be available at <uri>https://weix-liu.github.io/</uri> for further research.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10965745/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10965745/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的云检测方法通常依赖于深度神经网络,导致计算开销过大。为了解决这个问题,我们提出了一种浅卷积神经网络(CNN) -变压器混合架构,该架构将最大下采样率限制在$8\times $。这种设计保留了局部细节,同时通过轻量级Transformer分支有效地捕获全局上下文。为了增强不同云场景的适应性,我们引入了两个新的统计驱动模块:统计自适应卷积(SAC)和统计混合增强(SMA)。SAC基于输入特征统计动态生成卷积核,实现对不同云模式的自适应特征提取。SMA通过在训练样本中插值通道统计数据来提高模型泛化,增加特征多样性。在4个数据集上的实验表明,该方法在732 K个参数和1G次乘法累加操作(mac)下达到了最先进的性能。我们的代码将在https://weix-liu.github.io/上提供,以供进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SCTNet: A Shallow CNN–Transformer Network With Statistics-Driven Modules for Cloud Detection
Existing cloud detection methods often rely on deep neural networks, leading to excessive computational overhead. To address this, we propose a shallow convolutional neural network (CNN)–Transformer hybrid architecture that limits the maximum downsampling rate to $8\times $ . This design preserves local details while effectively capturing global context through a lightweight Transformer branch. To enhance adaptability across diverse cloud scenes, we introduce two novel statistics-driven modules: statistics-adaptive convolution (SAC) and statistical mixing augmentation (SMA). SAC dynamically generates convolutional kernels based on input feature statistics, enabling adaptive feature extraction for varying cloud patterns. SMA improves model generalization by interpolating channel-wise statistics across training samples, increasing feature diversity. Experiments on four datasets show that the proposed method achieves state-of-the-art performance with 732 K parameters and 1G multiply-accumulate operations (MACs). Our code will be available at https://weix-liu.github.io/ for further research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信