{"title":"设计相关荷载下大型结构拓扑优化的并行参数化水平集方法","authors":"Peng Wei , Ben Cheng , Haoju Lin , Hui Liu","doi":"10.1016/j.cma.2025.118032","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a topology optimization framework for three-dimensional continuum structures subjected to design-dependent loads, including gravity, centrifugal, and hydrostatic pressure loads. First, this study utilizes the parameterized level set method (PLSM) with unstructured meshes to effectively handle complex structural shapes and boundary conditions. Second, this work employs parallel computing techniques and uses the shape function as the basis function in PLSM to significantly enhance computational efficiency. Additionally, this study comprehensively analyzes design-dependent loads and addresses topology optimization of large-scale structures under complex load conditions. This study overcomes the lack of research on complicated 3D design-dependent load problems. It aims to broaden the application of topology optimization techniques, making them more applicable to engineering practices, such as large-scale underwater structures. Finally, several 3D examples demonstrate the proposed framework’s efficiency, stability, and ability to generate innovative structural designs.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"443 ","pages":"Article 118032"},"PeriodicalIF":6.9000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A parallel parameterized level set method for large-scale structural topology optimization under design-dependent load\",\"authors\":\"Peng Wei , Ben Cheng , Haoju Lin , Hui Liu\",\"doi\":\"10.1016/j.cma.2025.118032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposes a topology optimization framework for three-dimensional continuum structures subjected to design-dependent loads, including gravity, centrifugal, and hydrostatic pressure loads. First, this study utilizes the parameterized level set method (PLSM) with unstructured meshes to effectively handle complex structural shapes and boundary conditions. Second, this work employs parallel computing techniques and uses the shape function as the basis function in PLSM to significantly enhance computational efficiency. Additionally, this study comprehensively analyzes design-dependent loads and addresses topology optimization of large-scale structures under complex load conditions. This study overcomes the lack of research on complicated 3D design-dependent load problems. It aims to broaden the application of topology optimization techniques, making them more applicable to engineering practices, such as large-scale underwater structures. Finally, several 3D examples demonstrate the proposed framework’s efficiency, stability, and ability to generate innovative structural designs.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"443 \",\"pages\":\"Article 118032\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782525003044\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525003044","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A parallel parameterized level set method for large-scale structural topology optimization under design-dependent load
This paper proposes a topology optimization framework for three-dimensional continuum structures subjected to design-dependent loads, including gravity, centrifugal, and hydrostatic pressure loads. First, this study utilizes the parameterized level set method (PLSM) with unstructured meshes to effectively handle complex structural shapes and boundary conditions. Second, this work employs parallel computing techniques and uses the shape function as the basis function in PLSM to significantly enhance computational efficiency. Additionally, this study comprehensively analyzes design-dependent loads and addresses topology optimization of large-scale structures under complex load conditions. This study overcomes the lack of research on complicated 3D design-dependent load problems. It aims to broaden the application of topology optimization techniques, making them more applicable to engineering practices, such as large-scale underwater structures. Finally, several 3D examples demonstrate the proposed framework’s efficiency, stability, and ability to generate innovative structural designs.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.