Liming Lin , Jibo Han , Diyun Xu , Zimin Fang , Bozhi Ye , Jinfu Qian , Xue Han , Julian Min , Xiaohong Long , Gaojun Wu , Guang Liang
{"title":"去泛素酶USP13通过促进自噬介导的STING降解来减轻阿霉素诱导的心脏毒性","authors":"Liming Lin , Jibo Han , Diyun Xu , Zimin Fang , Bozhi Ye , Jinfu Qian , Xue Han , Julian Min , Xiaohong Long , Gaojun Wu , Guang Liang","doi":"10.1016/j.apsb.2025.03.051","DOIUrl":null,"url":null,"abstract":"<div><div>Doxorubicin (Dox) is an anthracycline drug widely applied in various malignancies. However, the fatal cardiotoxicity induced by Dox limits its clinical application. Post-transcriptional protein modification <em>via</em> ubiquitination/deubiquitination in cardiomyocytes mediates the pathophysiological process in Dox-induced cardiotoxicity (DIC). In this study, we aimed to clarify the regulatory role and mechanism of a deubiquitinating enzyme, ubiquitin-specific peptidase 13 (USP13), in DIC. RNA-seq analysis and experimental examinations identified that cardiomyocyte-derived USP13 positively correlated with DIC. Mice with cardiac-specific deletion of USP13 were subjected to Dox modeling. Adeno-associated virus serotype 9 (AAV9) carrying <em>cTNT</em> promoter was constructed to overexpress USP13 in mouse heart tissues. Cardiomyocyte-specific knockout of USP13 exacerbated DIC, while its overexpression mitigated DIC in mice. Mechanistically, USP13 deubiquitinates the stimulator of interferon genes (STING) and promotes the autolysosome-related degradation of STING, subsequently alleviating cardiomyocyte inflammation and death. Our study suggests that USP13 serves a cardioprotective role in DIC and indicates USP13 as a potential therapeutic target for DIC treatment.</div></div>","PeriodicalId":6906,"journal":{"name":"Acta Pharmaceutica Sinica. B","volume":"15 5","pages":"Pages 2545-2558"},"PeriodicalIF":14.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deubiquitinase USP13 alleviates doxorubicin-induced cardiotoxicity through promoting the autophagy-mediated degradation of STING\",\"authors\":\"Liming Lin , Jibo Han , Diyun Xu , Zimin Fang , Bozhi Ye , Jinfu Qian , Xue Han , Julian Min , Xiaohong Long , Gaojun Wu , Guang Liang\",\"doi\":\"10.1016/j.apsb.2025.03.051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Doxorubicin (Dox) is an anthracycline drug widely applied in various malignancies. However, the fatal cardiotoxicity induced by Dox limits its clinical application. Post-transcriptional protein modification <em>via</em> ubiquitination/deubiquitination in cardiomyocytes mediates the pathophysiological process in Dox-induced cardiotoxicity (DIC). In this study, we aimed to clarify the regulatory role and mechanism of a deubiquitinating enzyme, ubiquitin-specific peptidase 13 (USP13), in DIC. RNA-seq analysis and experimental examinations identified that cardiomyocyte-derived USP13 positively correlated with DIC. Mice with cardiac-specific deletion of USP13 were subjected to Dox modeling. Adeno-associated virus serotype 9 (AAV9) carrying <em>cTNT</em> promoter was constructed to overexpress USP13 in mouse heart tissues. Cardiomyocyte-specific knockout of USP13 exacerbated DIC, while its overexpression mitigated DIC in mice. Mechanistically, USP13 deubiquitinates the stimulator of interferon genes (STING) and promotes the autolysosome-related degradation of STING, subsequently alleviating cardiomyocyte inflammation and death. Our study suggests that USP13 serves a cardioprotective role in DIC and indicates USP13 as a potential therapeutic target for DIC treatment.</div></div>\",\"PeriodicalId\":6906,\"journal\":{\"name\":\"Acta Pharmaceutica Sinica. B\",\"volume\":\"15 5\",\"pages\":\"Pages 2545-2558\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Pharmaceutica Sinica. B\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211383525002205\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Pharmaceutica Sinica. B","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211383525002205","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Deubiquitinase USP13 alleviates doxorubicin-induced cardiotoxicity through promoting the autophagy-mediated degradation of STING
Doxorubicin (Dox) is an anthracycline drug widely applied in various malignancies. However, the fatal cardiotoxicity induced by Dox limits its clinical application. Post-transcriptional protein modification via ubiquitination/deubiquitination in cardiomyocytes mediates the pathophysiological process in Dox-induced cardiotoxicity (DIC). In this study, we aimed to clarify the regulatory role and mechanism of a deubiquitinating enzyme, ubiquitin-specific peptidase 13 (USP13), in DIC. RNA-seq analysis and experimental examinations identified that cardiomyocyte-derived USP13 positively correlated with DIC. Mice with cardiac-specific deletion of USP13 were subjected to Dox modeling. Adeno-associated virus serotype 9 (AAV9) carrying cTNT promoter was constructed to overexpress USP13 in mouse heart tissues. Cardiomyocyte-specific knockout of USP13 exacerbated DIC, while its overexpression mitigated DIC in mice. Mechanistically, USP13 deubiquitinates the stimulator of interferon genes (STING) and promotes the autolysosome-related degradation of STING, subsequently alleviating cardiomyocyte inflammation and death. Our study suggests that USP13 serves a cardioprotective role in DIC and indicates USP13 as a potential therapeutic target for DIC treatment.
Acta Pharmaceutica Sinica. BPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
22.40
自引率
5.50%
发文量
1051
审稿时长
19 weeks
期刊介绍:
The Journal of the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association oversees the peer review process for Acta Pharmaceutica Sinica. B (APSB).
Published monthly in English, APSB is dedicated to disseminating significant original research articles, rapid communications, and high-quality reviews that highlight recent advances across various pharmaceutical sciences domains. These encompass pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis, and pharmacokinetics.
A part of the Acta Pharmaceutica Sinica series, established in 1953 and indexed in prominent databases like Chemical Abstracts, Index Medicus, SciFinder Scholar, Biological Abstracts, International Pharmaceutical Abstracts, Cambridge Scientific Abstracts, and Current Bibliography on Science and Technology, APSB is sponsored by the Institute of Materia Medica, Chinese Academy of Medical Sciences, and the Chinese Pharmaceutical Association. Its production and hosting are facilitated by Elsevier B.V. This collaborative effort ensures APSB's commitment to delivering valuable contributions to the pharmaceutical sciences community.