重尾矩阵变量隐马尔可夫模型

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Salvatore D. Tomarchio
{"title":"重尾矩阵变量隐马尔可夫模型","authors":"Salvatore D. Tomarchio","doi":"10.1016/j.csda.2025.108198","DOIUrl":null,"url":null,"abstract":"<div><div>The matrix-variate framework for hidden Markov models (HMMs) is expanded with two families of models using matrix-variate <em>t</em> and contaminated normal distributions. These models improve the handling of tail behavior, clustering, and address challenges in identifying outlying matrices in matrix-variate data. Two Expectation-Conditional Maximization (ECM) algorithms are implemented in the R package <strong>MatrixHMM</strong> for parameter estimation. Simulations assess parameter recovery, robustness, anomaly detection, and show the advantages over alternative approaches. The models are applied to real-world data to analyze labor market dynamics across Italian provinces.</div></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"211 ","pages":"Article 108198"},"PeriodicalIF":1.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heavy-tailed matrix-variate hidden Markov models\",\"authors\":\"Salvatore D. Tomarchio\",\"doi\":\"10.1016/j.csda.2025.108198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The matrix-variate framework for hidden Markov models (HMMs) is expanded with two families of models using matrix-variate <em>t</em> and contaminated normal distributions. These models improve the handling of tail behavior, clustering, and address challenges in identifying outlying matrices in matrix-variate data. Two Expectation-Conditional Maximization (ECM) algorithms are implemented in the R package <strong>MatrixHMM</strong> for parameter estimation. Simulations assess parameter recovery, robustness, anomaly detection, and show the advantages over alternative approaches. The models are applied to real-world data to analyze labor market dynamics across Italian provinces.</div></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"211 \",\"pages\":\"Article 108198\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016794732500074X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016794732500074X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

将隐马尔可夫模型(hmm)的矩阵变量框架扩展为使用矩阵变量t和污染正态分布的两类模型。这些模型改进了尾部行为、聚类的处理,并解决了在矩阵变量数据中识别离群矩阵的挑战。在R包MatrixHMM中实现了两种期望-条件最大化(ECM)算法用于参数估计。模拟评估参数恢复,鲁棒性,异常检测,并显示优于替代方法的优势。这些模型被应用于现实世界的数据,以分析意大利各省的劳动力市场动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heavy-tailed matrix-variate hidden Markov models
The matrix-variate framework for hidden Markov models (HMMs) is expanded with two families of models using matrix-variate t and contaminated normal distributions. These models improve the handling of tail behavior, clustering, and address challenges in identifying outlying matrices in matrix-variate data. Two Expectation-Conditional Maximization (ECM) algorithms are implemented in the R package MatrixHMM for parameter estimation. Simulations assess parameter recovery, robustness, anomaly detection, and show the advantages over alternative approaches. The models are applied to real-world data to analyze labor market dynamics across Italian provinces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信