Hussam J. Khasawneh , Waseem M. Al-Khatib , Zaid A. Ghazal , Ahmad M. Al-Hadi , Zaid M. Arabiyat , Osama Habahbeh
{"title":"利用基于机器学习的调度技术优化设施中的太阳能利用:一个案例研究","authors":"Hussam J. Khasawneh , Waseem M. Al-Khatib , Zaid A. Ghazal , Ahmad M. Al-Hadi , Zaid M. Arabiyat , Osama Habahbeh","doi":"10.1016/j.rset.2025.100114","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces an approach to improving the utilization of solar energy in facilities by integrating advanced machine learning (ML) techniques into solar power scheduling. Traditional methods, often constrained by static schedules, fail to adequately adapt to the inherently dynamic and intermittent nature of solar energy. Our approach overcomes these limitations by employing ML algorithms to accurately predict solar generation patterns, enabling more efficient scheduling of electrical appliances. This methodology was applied to a facility equipped with a 5 kW photovoltaic system, resulting in a significant reduction in grid dependency by more than 26%. This marked decrease in grid imports underscores the effectiveness of our approach in optimizing solar energy use, particularly in settings where traditional scheduling methods fall short. The study demonstrates the practical benefits of ML in managing solar energy resources to reduce dependence on conventional power grids, thus contributing to more sustainable energy practices. The findings of this research have far-reaching implications, suggesting a notable advancement in solar energy management towards more adaptive, data-driven solutions and paving the way for broader applications in various sectors seeking to maximize renewable energy use.</div></div>","PeriodicalId":101071,"journal":{"name":"Renewable and Sustainable Energy Transition","volume":"7 ","pages":"Article 100114"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing solar energy utilization in facilities using machine learning-based scheduling techniques: A case study\",\"authors\":\"Hussam J. Khasawneh , Waseem M. Al-Khatib , Zaid A. Ghazal , Ahmad M. Al-Hadi , Zaid M. Arabiyat , Osama Habahbeh\",\"doi\":\"10.1016/j.rset.2025.100114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces an approach to improving the utilization of solar energy in facilities by integrating advanced machine learning (ML) techniques into solar power scheduling. Traditional methods, often constrained by static schedules, fail to adequately adapt to the inherently dynamic and intermittent nature of solar energy. Our approach overcomes these limitations by employing ML algorithms to accurately predict solar generation patterns, enabling more efficient scheduling of electrical appliances. This methodology was applied to a facility equipped with a 5 kW photovoltaic system, resulting in a significant reduction in grid dependency by more than 26%. This marked decrease in grid imports underscores the effectiveness of our approach in optimizing solar energy use, particularly in settings where traditional scheduling methods fall short. The study demonstrates the practical benefits of ML in managing solar energy resources to reduce dependence on conventional power grids, thus contributing to more sustainable energy practices. The findings of this research have far-reaching implications, suggesting a notable advancement in solar energy management towards more adaptive, data-driven solutions and paving the way for broader applications in various sectors seeking to maximize renewable energy use.</div></div>\",\"PeriodicalId\":101071,\"journal\":{\"name\":\"Renewable and Sustainable Energy Transition\",\"volume\":\"7 \",\"pages\":\"Article 100114\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Transition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667095X25000133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Transition","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667095X25000133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing solar energy utilization in facilities using machine learning-based scheduling techniques: A case study
This study introduces an approach to improving the utilization of solar energy in facilities by integrating advanced machine learning (ML) techniques into solar power scheduling. Traditional methods, often constrained by static schedules, fail to adequately adapt to the inherently dynamic and intermittent nature of solar energy. Our approach overcomes these limitations by employing ML algorithms to accurately predict solar generation patterns, enabling more efficient scheduling of electrical appliances. This methodology was applied to a facility equipped with a 5 kW photovoltaic system, resulting in a significant reduction in grid dependency by more than 26%. This marked decrease in grid imports underscores the effectiveness of our approach in optimizing solar energy use, particularly in settings where traditional scheduling methods fall short. The study demonstrates the practical benefits of ML in managing solar energy resources to reduce dependence on conventional power grids, thus contributing to more sustainable energy practices. The findings of this research have far-reaching implications, suggesting a notable advancement in solar energy management towards more adaptive, data-driven solutions and paving the way for broader applications in various sectors seeking to maximize renewable energy use.