有和无参数不确定性耦合复值神经网络的非周期间歇H∞同步

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Yanli Huang, Yuqing Jia
{"title":"有和无参数不确定性耦合复值神经网络的非周期间歇H∞同步","authors":"Yanli Huang,&nbsp;Yuqing Jia","doi":"10.1016/j.physd.2025.134694","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate aperiodically intermittent <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> synchronization and robustly aperiodically intermittent <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> synchronization for both coupled complex-valued neural networks (CCVNNs) and coupled complex-valued delayed neural networks (CCVDNNs). Initially, certain synchronization criteria for CCVNNs are established using suitable Lyapunov functionals in conjunction with a variety of inequality techniques. Furthermore, we also examine robust synchronization of CCVNNs, taking into account the impact of parameter uncertainties in neural networks. In addition, the corresponding aperiodically intermittent <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> synchronization and robustly aperiodically intermittent <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> synchronization results are generalized to the network of CCVDNNs, in which the activation function is time-varying delayed. Finally, two numerical examples prove the reliability and the benefits of the proposed results.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"477 ","pages":"Article 134694"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aperiodically intermittent H∞ synchronization of coupled complex-valued neural networks with and without parameter uncertainties\",\"authors\":\"Yanli Huang,&nbsp;Yuqing Jia\",\"doi\":\"10.1016/j.physd.2025.134694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate aperiodically intermittent <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> synchronization and robustly aperiodically intermittent <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> synchronization for both coupled complex-valued neural networks (CCVNNs) and coupled complex-valued delayed neural networks (CCVDNNs). Initially, certain synchronization criteria for CCVNNs are established using suitable Lyapunov functionals in conjunction with a variety of inequality techniques. Furthermore, we also examine robust synchronization of CCVNNs, taking into account the impact of parameter uncertainties in neural networks. In addition, the corresponding aperiodically intermittent <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> synchronization and robustly aperiodically intermittent <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> synchronization results are generalized to the network of CCVDNNs, in which the activation function is time-varying delayed. Finally, two numerical examples prove the reliability and the benefits of the proposed results.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"477 \",\"pages\":\"Article 134694\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016727892500171X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727892500171X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了耦合复值神经网络(ccvnn)和耦合复值延迟神经网络(ccvdnn)的非周期间歇H∞同步和鲁棒非周期间歇H∞同步问题。首先,使用合适的Lyapunov函数结合各种不等式技术,建立了ccvnn的某些同步准则。此外,考虑到神经网络中参数不确定性的影响,我们还研究了ccvnn的鲁棒同步。此外,将相应的非周期间歇H∞同步和鲁棒非周期间歇H∞同步结果推广到激活函数为时变延迟的ccvdnn网络中。最后,通过两个算例验证了所提结果的可靠性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aperiodically intermittent H∞ synchronization of coupled complex-valued neural networks with and without parameter uncertainties
In this paper, we investigate aperiodically intermittent H synchronization and robustly aperiodically intermittent H synchronization for both coupled complex-valued neural networks (CCVNNs) and coupled complex-valued delayed neural networks (CCVDNNs). Initially, certain synchronization criteria for CCVNNs are established using suitable Lyapunov functionals in conjunction with a variety of inequality techniques. Furthermore, we also examine robust synchronization of CCVNNs, taking into account the impact of parameter uncertainties in neural networks. In addition, the corresponding aperiodically intermittent H synchronization and robustly aperiodically intermittent H synchronization results are generalized to the network of CCVDNNs, in which the activation function is time-varying delayed. Finally, two numerical examples prove the reliability and the benefits of the proposed results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信