Flavio Corradini, Alessandro Marcelletti, Andrea Morichetta, Barbara Re
{"title":"一种提取和解码智能合约数据的方法","authors":"Flavio Corradini, Alessandro Marcelletti, Andrea Morichetta, Barbara Re","doi":"10.1016/j.comcom.2025.108204","DOIUrl":null,"url":null,"abstract":"<div><div>Blockchain technology has been widely adopted to enhance the security and the decentralisation of smart applications in large-scale pervasive systems. In such a context, data extraction is crucial as it provides a better understanding of the system’s behaviours. However, several challenges arise in automatically extracting data, due to the variety of data sources, such as transactions, events, contract storage, and the complexity of the blockchain structure. In particular, retrieving smart contract state changes remains unexplored despite its potential usage for discovering unexpected behaviour. For such reasons, in this work, we propose a novel methodology and a supporting application for extracting smart contract state changes and other execution-related data. The obtained data is then decoded and offered in a standard format to be easily reused. The methodology provides additional functionalities such as transaction filtering and capabilities for querying over extracted data. The effectiveness and the performance of the methodology were evaluated on three real-world projects from different EVM-based blockchains.</div></div>","PeriodicalId":55224,"journal":{"name":"Computer Communications","volume":"240 ","pages":"Article 108204"},"PeriodicalIF":4.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A methodology for extracting and decoding smart contracts data\",\"authors\":\"Flavio Corradini, Alessandro Marcelletti, Andrea Morichetta, Barbara Re\",\"doi\":\"10.1016/j.comcom.2025.108204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Blockchain technology has been widely adopted to enhance the security and the decentralisation of smart applications in large-scale pervasive systems. In such a context, data extraction is crucial as it provides a better understanding of the system’s behaviours. However, several challenges arise in automatically extracting data, due to the variety of data sources, such as transactions, events, contract storage, and the complexity of the blockchain structure. In particular, retrieving smart contract state changes remains unexplored despite its potential usage for discovering unexpected behaviour. For such reasons, in this work, we propose a novel methodology and a supporting application for extracting smart contract state changes and other execution-related data. The obtained data is then decoded and offered in a standard format to be easily reused. The methodology provides additional functionalities such as transaction filtering and capabilities for querying over extracted data. The effectiveness and the performance of the methodology were evaluated on three real-world projects from different EVM-based blockchains.</div></div>\",\"PeriodicalId\":55224,\"journal\":{\"name\":\"Computer Communications\",\"volume\":\"240 \",\"pages\":\"Article 108204\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140366425001616\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140366425001616","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
A methodology for extracting and decoding smart contracts data
Blockchain technology has been widely adopted to enhance the security and the decentralisation of smart applications in large-scale pervasive systems. In such a context, data extraction is crucial as it provides a better understanding of the system’s behaviours. However, several challenges arise in automatically extracting data, due to the variety of data sources, such as transactions, events, contract storage, and the complexity of the blockchain structure. In particular, retrieving smart contract state changes remains unexplored despite its potential usage for discovering unexpected behaviour. For such reasons, in this work, we propose a novel methodology and a supporting application for extracting smart contract state changes and other execution-related data. The obtained data is then decoded and offered in a standard format to be easily reused. The methodology provides additional functionalities such as transaction filtering and capabilities for querying over extracted data. The effectiveness and the performance of the methodology were evaluated on three real-world projects from different EVM-based blockchains.
期刊介绍:
Computer and Communications networks are key infrastructures of the information society with high socio-economic value as they contribute to the correct operations of many critical services (from healthcare to finance and transportation). Internet is the core of today''s computer-communication infrastructures. This has transformed the Internet, from a robust network for data transfer between computers, to a global, content-rich, communication and information system where contents are increasingly generated by the users, and distributed according to human social relations. Next-generation network technologies, architectures and protocols are therefore required to overcome the limitations of the legacy Internet and add new capabilities and services. The future Internet should be ubiquitous, secure, resilient, and closer to human communication paradigms.
Computer Communications is a peer-reviewed international journal that publishes high-quality scientific articles (both theory and practice) and survey papers covering all aspects of future computer communication networks (on all layers, except the physical layer), with a special attention to the evolution of the Internet architecture, protocols, services, and applications.