基于深度学习方法的视网膜图像分析的高血压视网膜病变检测与分类

Bambang Krismono Triwijoyo, Ahmat Adil, Muhammad Zulfikri
{"title":"基于深度学习方法的视网膜图像分析的高血压视网膜病变检测与分类","authors":"Bambang Krismono Triwijoyo,&nbsp;Ahmat Adil,&nbsp;Muhammad Zulfikri","doi":"10.1016/j.cmpbup.2025.100191","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>The issue is that most heart attacks and strokes happen unexpectedly to people who have signs of high blood pressure that are not identified in time for treatment. These gap factors make the research on hypertensive retinopathy urgent since it requires an early detection model to improve treatment accuracy and prevent heart attacks and strokes before they happen.</div></div><div><h3>Methods</h3><div>This research utilizes secondary data, specifically a retinal image dataset from the open-source Messidor database. This database comprises 1200 retinal images, each measuring 1440 × 940 pixels. The dataset is divided into 60 % training and 40 % validation data. The next step is the image analysis process, which involves extracting retinal blood vessels using the Otsu segmentation algorithm. A Morphological Approach is used to obtain comprehensive features of the blood vessels around the Optic Disc (OD). This stage aims to extract and sample the comparison between the width of the artery and vein (AVR). This research uses a Deep Convolutional Neural Network (DCNN) classification model with cross-validation training using the Leave-one-out method.</div></div><div><h3>Results</h3><div>The results of testing the model with nine output classes, the features extracted in each convolutional layer, the second layer successfully extracts the retina and eye blood vessels, the third layer extracts the retinal image texture, and the fourth layer extracts hard exudates, hemorrhages, and cotton wool spots. Meanwhile, the Specificity, Recall, Accuracy, and F-Score results are 90 %, 81.82 %, 90 %, and 90 %, respectively.</div></div><div><h3>Conclusions</h3><div>This research's findings first include applying the AVR calculation algorithm to build a new dataset with 9 class categories. Second, the architectural specifications of the CNN model are determined, and the input size, depth, and number of nodes for each layer, as well as the transfer function, learning rate, and number of epochs, are set by adjusting hyperparameters.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100191"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection and classification of hypertensive retinopathy based on retinal image analysis using a deep learning approach\",\"authors\":\"Bambang Krismono Triwijoyo,&nbsp;Ahmat Adil,&nbsp;Muhammad Zulfikri\",\"doi\":\"10.1016/j.cmpbup.2025.100191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>The issue is that most heart attacks and strokes happen unexpectedly to people who have signs of high blood pressure that are not identified in time for treatment. These gap factors make the research on hypertensive retinopathy urgent since it requires an early detection model to improve treatment accuracy and prevent heart attacks and strokes before they happen.</div></div><div><h3>Methods</h3><div>This research utilizes secondary data, specifically a retinal image dataset from the open-source Messidor database. This database comprises 1200 retinal images, each measuring 1440 × 940 pixels. The dataset is divided into 60 % training and 40 % validation data. The next step is the image analysis process, which involves extracting retinal blood vessels using the Otsu segmentation algorithm. A Morphological Approach is used to obtain comprehensive features of the blood vessels around the Optic Disc (OD). This stage aims to extract and sample the comparison between the width of the artery and vein (AVR). This research uses a Deep Convolutional Neural Network (DCNN) classification model with cross-validation training using the Leave-one-out method.</div></div><div><h3>Results</h3><div>The results of testing the model with nine output classes, the features extracted in each convolutional layer, the second layer successfully extracts the retina and eye blood vessels, the third layer extracts the retinal image texture, and the fourth layer extracts hard exudates, hemorrhages, and cotton wool spots. Meanwhile, the Specificity, Recall, Accuracy, and F-Score results are 90 %, 81.82 %, 90 %, and 90 %, respectively.</div></div><div><h3>Conclusions</h3><div>This research's findings first include applying the AVR calculation algorithm to build a new dataset with 9 class categories. Second, the architectural specifications of the CNN model are determined, and the input size, depth, and number of nodes for each layer, as well as the transfer function, learning rate, and number of epochs, are set by adjusting hyperparameters.</div></div>\",\"PeriodicalId\":72670,\"journal\":{\"name\":\"Computer methods and programs in biomedicine update\",\"volume\":\"7 \",\"pages\":\"Article 100191\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine update\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666990025000151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990025000151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

问题是,大多数心脏病发作和中风意外发生在那些有高血压症状的人身上,而这些症状没有及时发现并进行治疗。这些空白因素使得对高血压视网膜病变的研究迫在眉睫,因为它需要一个早期发现模型来提高治疗的准确性,并在心脏病发作和中风发生之前进行预防。方法本研究利用二手数据,特别是来自开源Messidor数据库的视网膜图像数据集。该数据库包含1200张视网膜图像,每张图像的尺寸为1440 × 940像素。数据集分为60%的训练数据和40%的验证数据。下一步是图像分析过程,其中包括使用Otsu分割算法提取视网膜血管。形态学方法用于获得视盘周围血管的综合特征。这一阶段的目的是提取和采样对比的动脉和静脉的宽度(AVR)。本研究使用深度卷积神经网络(DCNN)分类模型,并使用留一法进行交叉验证训练。结果对模型进行了9个输出类的测试,每个卷积层提取的特征,第二层成功提取视网膜和眼部血管,第三层提取视网膜图像纹理,第四层提取硬渗出物、出血物和棉絮斑。特异性为90%,召回率为81.82%,准确率为90%,F-Score为90%。本研究的发现首先包括应用AVR计算算法构建一个包含9个类的新数据集。其次,确定CNN模型的体系结构规范,通过调整超参数设置每层的输入大小、深度和节点数,以及传递函数、学习率和epoch数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection and classification of hypertensive retinopathy based on retinal image analysis using a deep learning approach

Background

The issue is that most heart attacks and strokes happen unexpectedly to people who have signs of high blood pressure that are not identified in time for treatment. These gap factors make the research on hypertensive retinopathy urgent since it requires an early detection model to improve treatment accuracy and prevent heart attacks and strokes before they happen.

Methods

This research utilizes secondary data, specifically a retinal image dataset from the open-source Messidor database. This database comprises 1200 retinal images, each measuring 1440 × 940 pixels. The dataset is divided into 60 % training and 40 % validation data. The next step is the image analysis process, which involves extracting retinal blood vessels using the Otsu segmentation algorithm. A Morphological Approach is used to obtain comprehensive features of the blood vessels around the Optic Disc (OD). This stage aims to extract and sample the comparison between the width of the artery and vein (AVR). This research uses a Deep Convolutional Neural Network (DCNN) classification model with cross-validation training using the Leave-one-out method.

Results

The results of testing the model with nine output classes, the features extracted in each convolutional layer, the second layer successfully extracts the retina and eye blood vessels, the third layer extracts the retinal image texture, and the fourth layer extracts hard exudates, hemorrhages, and cotton wool spots. Meanwhile, the Specificity, Recall, Accuracy, and F-Score results are 90 %, 81.82 %, 90 %, and 90 %, respectively.

Conclusions

This research's findings first include applying the AVR calculation algorithm to build a new dataset with 9 class categories. Second, the architectural specifications of the CNN model are determined, and the input size, depth, and number of nodes for each layer, as well as the transfer function, learning rate, and number of epochs, are set by adjusting hyperparameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信