TREX1的系统性失活诱导肿瘤微环境的选择性炎症和活化的T细胞介导的肿瘤控制

IF 12.5 1区 医学 Q1 ONCOLOGY
Emilija Marinkovic, Minyi Chen, Nadja Schubert, Elif Dogan Dar, Tanja Poth, Janet Y. Leung, Jack Lohre, Jennifer M. Sahni, Christine Tun, Pavithra Rajeswaran, Tanja Mehlo-Jensen, Olivia Perng, C. Mark Hill, Pallavur Sivakumar, Michael J. Barnes, Rohit Malik, Rayk Behrendt, Axel Roers
{"title":"TREX1的系统性失活诱导肿瘤微环境的选择性炎症和活化的T细胞介导的肿瘤控制","authors":"Emilija Marinkovic, Minyi Chen, Nadja Schubert, Elif Dogan Dar, Tanja Poth, Janet Y. Leung, Jack Lohre, Jennifer M. Sahni, Christine Tun, Pavithra Rajeswaran, Tanja Mehlo-Jensen, Olivia Perng, C. Mark Hill, Pallavur Sivakumar, Michael J. Barnes, Rohit Malik, Rayk Behrendt, Axel Roers","doi":"10.1158/0008-5472.can-24-2262","DOIUrl":null,"url":null,"abstract":"Therapeutic innate immune stimulation within the tumor microenvironment can potentiate endogenous antitumor T cell immunity. Strategies for controlled activation of cGAS/STING signaling are currently under intense investigation. DNase 3’-repair exonuclease 1 (TREX1) is essential for cellular DNA disposal, which prevents autoimmunity ensuing from cGAS/STING activation by endogenous DNA. TREX1-deficient tumor cells elicit enhanced protective immunity in syngeneic models. Here, we showed that induced inactivation of the Trex1 gene in host (non-cancer) cells yields improved type I IFN- and T cell-dependent control of established TREX1-competent tumors. Host TREX1 deficiency was well tolerated and triggered selective immune cell infiltration into tumors but not into other tissues. Induced systemic loss of TREX1 in tumor-bearing mice resulted in enhanced intra-tumoral T cell proliferation and massive increase in numbers of effector and effector-like ‘exhausted’ cells, enabling complete rejection in combination with checkpoint inhibition. To conclude, systemic TREX1 inhibition is a promising approach to boost anti-tumor immunity and to overcome immune evasion mediated by cancer cell-intrinsic cGAS/STING inactivation.","PeriodicalId":9441,"journal":{"name":"Cancer research","volume":"38 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systemic Inactivation of TREX1 Induces Selective Inflammation of the Tumor Microenvironment and Invigorated T Cell-Mediated Tumor Control\",\"authors\":\"Emilija Marinkovic, Minyi Chen, Nadja Schubert, Elif Dogan Dar, Tanja Poth, Janet Y. Leung, Jack Lohre, Jennifer M. Sahni, Christine Tun, Pavithra Rajeswaran, Tanja Mehlo-Jensen, Olivia Perng, C. Mark Hill, Pallavur Sivakumar, Michael J. Barnes, Rohit Malik, Rayk Behrendt, Axel Roers\",\"doi\":\"10.1158/0008-5472.can-24-2262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Therapeutic innate immune stimulation within the tumor microenvironment can potentiate endogenous antitumor T cell immunity. Strategies for controlled activation of cGAS/STING signaling are currently under intense investigation. DNase 3’-repair exonuclease 1 (TREX1) is essential for cellular DNA disposal, which prevents autoimmunity ensuing from cGAS/STING activation by endogenous DNA. TREX1-deficient tumor cells elicit enhanced protective immunity in syngeneic models. Here, we showed that induced inactivation of the Trex1 gene in host (non-cancer) cells yields improved type I IFN- and T cell-dependent control of established TREX1-competent tumors. Host TREX1 deficiency was well tolerated and triggered selective immune cell infiltration into tumors but not into other tissues. Induced systemic loss of TREX1 in tumor-bearing mice resulted in enhanced intra-tumoral T cell proliferation and massive increase in numbers of effector and effector-like ‘exhausted’ cells, enabling complete rejection in combination with checkpoint inhibition. To conclude, systemic TREX1 inhibition is a promising approach to boost anti-tumor immunity and to overcome immune evasion mediated by cancer cell-intrinsic cGAS/STING inactivation.\",\"PeriodicalId\":9441,\"journal\":{\"name\":\"Cancer research\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/0008-5472.can-24-2262\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/0008-5472.can-24-2262","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肿瘤微环境内的治疗性先天免疫刺激可增强内源性抗肿瘤T细胞免疫。控制cGAS/STING信号激活的策略目前正在深入研究中。DNA酶3 ' -修复外切酶1 (TREX1)对细胞DNA处理至关重要,可防止内源性DNA激活cGAS/STING引起的自身免疫。在同基因模型中,trex1缺陷肿瘤细胞可引起增强的保护性免疫。在这里,我们发现在宿主(非癌症)细胞中诱导Trex1基因失活,可以改善对已建立的Trex1活性肿瘤的I型IFN和T细胞依赖性控制。宿主TREX1缺乏症耐受性良好,并引发选择性免疫细胞浸润到肿瘤中,但不会进入其他组织。在荷瘤小鼠中诱导TREX1的全身性缺失导致肿瘤内T细胞增殖增强,效应细胞和类似效应细胞的“耗尽”细胞数量大量增加,从而在结合检查点抑制的情况下实现完全排斥。综上所述,系统性TREX1抑制是一种很有希望的增强抗肿瘤免疫和克服癌细胞内在cGAS/STING失活介导的免疫逃避的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systemic Inactivation of TREX1 Induces Selective Inflammation of the Tumor Microenvironment and Invigorated T Cell-Mediated Tumor Control
Therapeutic innate immune stimulation within the tumor microenvironment can potentiate endogenous antitumor T cell immunity. Strategies for controlled activation of cGAS/STING signaling are currently under intense investigation. DNase 3’-repair exonuclease 1 (TREX1) is essential for cellular DNA disposal, which prevents autoimmunity ensuing from cGAS/STING activation by endogenous DNA. TREX1-deficient tumor cells elicit enhanced protective immunity in syngeneic models. Here, we showed that induced inactivation of the Trex1 gene in host (non-cancer) cells yields improved type I IFN- and T cell-dependent control of established TREX1-competent tumors. Host TREX1 deficiency was well tolerated and triggered selective immune cell infiltration into tumors but not into other tissues. Induced systemic loss of TREX1 in tumor-bearing mice resulted in enhanced intra-tumoral T cell proliferation and massive increase in numbers of effector and effector-like ‘exhausted’ cells, enabling complete rejection in combination with checkpoint inhibition. To conclude, systemic TREX1 inhibition is a promising approach to boost anti-tumor immunity and to overcome immune evasion mediated by cancer cell-intrinsic cGAS/STING inactivation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer research
Cancer research 医学-肿瘤学
CiteScore
16.10
自引率
0.90%
发文量
7677
审稿时长
2.5 months
期刊介绍: Cancer Research, published by the American Association for Cancer Research (AACR), is a journal that focuses on impactful original studies, reviews, and opinion pieces relevant to the broad cancer research community. Manuscripts that present conceptual or technological advances leading to insights into cancer biology are particularly sought after. The journal also places emphasis on convergence science, which involves bridging multiple distinct areas of cancer research. With primary subsections including Cancer Biology, Cancer Immunology, Cancer Metabolism and Molecular Mechanisms, Translational Cancer Biology, Cancer Landscapes, and Convergence Science, Cancer Research has a comprehensive scope. It is published twice a month and has one volume per year, with a print ISSN of 0008-5472 and an online ISSN of 1538-7445. Cancer Research is abstracted and/or indexed in various databases and platforms, including BIOSIS Previews (R) Database, MEDLINE, Current Contents/Life Sciences, Current Contents/Clinical Medicine, Science Citation Index, Scopus, and Web of Science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信