简单、可扩展地将单原子Mn引入具有长期活性和稳定性的RuO2析氧电催化剂上

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhong-Hua Xue, Javeed Mahmood, Yuxuan Shang, Guanxing Li, Seok-Jin Kim, Yu Han, Cafer T. Yavuz
{"title":"简单、可扩展地将单原子Mn引入具有长期活性和稳定性的RuO2析氧电催化剂上","authors":"Zhong-Hua Xue, Javeed Mahmood, Yuxuan Shang, Guanxing Li, Seok-Jin Kim, Yu Han, Cafer T. Yavuz","doi":"10.1021/jacs.5c01886","DOIUrl":null,"url":null,"abstract":"Electrochemical oxygen evolution reaction (OER) is the bottleneck for realizing renewable powered green hydrogen production through water splitting due to the challenges of electrode stability under harsh oxidative environments and electrolytes with extreme acidity and basicity. Here, we introduce a single-atom manganese-incorporated ruthenium oxide electrocatalyst via a facile impregnation approach for catalyzing the OER across a wide pH range, while solving the stability issues of RuO<sub>2</sub>. The modified catalyst maintains stability for over 1000 h, delivering a current density of 10 mA cm<sup>–2</sup> at a 213 mV overpotential in acid (pH 0), 570 mV in potassium bicarbonate (pH 8.8), and 293 mV in alkaline media (pH 14), demonstrating exceptional durability under various conditions. When used as an anode for realistic water-splitting systems, Mn-modified RuO<sub>2</sub> performs at 1000 mA cm<sup>–2</sup> with a voltage of 1.69 V (Nafion 212 membrane) for proton-exchange membrane water electrolysis, and 1.84 V (UTP 220 diaphragm) for alkaline water electrolysis, exhibiting low degradation and verifying its substantial potential for practical applications.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"8 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple and Scalable Introduction of Single-Atom Mn on RuO2 Electrocatalysts for Oxygen Evolution Reaction with Long-Term Activity and Stability\",\"authors\":\"Zhong-Hua Xue, Javeed Mahmood, Yuxuan Shang, Guanxing Li, Seok-Jin Kim, Yu Han, Cafer T. Yavuz\",\"doi\":\"10.1021/jacs.5c01886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrochemical oxygen evolution reaction (OER) is the bottleneck for realizing renewable powered green hydrogen production through water splitting due to the challenges of electrode stability under harsh oxidative environments and electrolytes with extreme acidity and basicity. Here, we introduce a single-atom manganese-incorporated ruthenium oxide electrocatalyst via a facile impregnation approach for catalyzing the OER across a wide pH range, while solving the stability issues of RuO<sub>2</sub>. The modified catalyst maintains stability for over 1000 h, delivering a current density of 10 mA cm<sup>–2</sup> at a 213 mV overpotential in acid (pH 0), 570 mV in potassium bicarbonate (pH 8.8), and 293 mV in alkaline media (pH 14), demonstrating exceptional durability under various conditions. When used as an anode for realistic water-splitting systems, Mn-modified RuO<sub>2</sub> performs at 1000 mA cm<sup>–2</sup> with a voltage of 1.69 V (Nafion 212 membrane) for proton-exchange membrane water electrolysis, and 1.84 V (UTP 220 diaphragm) for alkaline water electrolysis, exhibiting low degradation and verifying its substantial potential for practical applications.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.5c01886\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c01886","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电化学析氧反应(OER)是通过水裂解实现可再生能源绿色制氢的瓶颈,因为电极在恶劣氧化环境下的稳定性和电解质的极端酸碱度存在挑战。在这里,我们介绍了一种单原子锰掺杂氧化钌电催化剂,通过易浸渍方法在宽pH范围内催化OER,同时解决了RuO2的稳定性问题。改性后的催化剂在酸性(pH = 0)、碳酸氢钾(pH = 8.8)和碱性(pH = 14)中,过电位分别为213 mV、570 mV和293 mV,可保持1000小时以上的稳定性,电流密度为10 mA cm-2,在各种条件下都表现出优异的耐久性。当用作实际水分解系统的阳极时,mn修饰的RuO2在1000 mA cm-2下表现良好,质子交换膜电解电压为1.69 V (Nafion 212膜),碱性电解电压为1.84 V (UTP 220膜),表现出低降解,验证了其实际应用的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simple and Scalable Introduction of Single-Atom Mn on RuO2 Electrocatalysts for Oxygen Evolution Reaction with Long-Term Activity and Stability

Simple and Scalable Introduction of Single-Atom Mn on RuO2 Electrocatalysts for Oxygen Evolution Reaction with Long-Term Activity and Stability
Electrochemical oxygen evolution reaction (OER) is the bottleneck for realizing renewable powered green hydrogen production through water splitting due to the challenges of electrode stability under harsh oxidative environments and electrolytes with extreme acidity and basicity. Here, we introduce a single-atom manganese-incorporated ruthenium oxide electrocatalyst via a facile impregnation approach for catalyzing the OER across a wide pH range, while solving the stability issues of RuO2. The modified catalyst maintains stability for over 1000 h, delivering a current density of 10 mA cm–2 at a 213 mV overpotential in acid (pH 0), 570 mV in potassium bicarbonate (pH 8.8), and 293 mV in alkaline media (pH 14), demonstrating exceptional durability under various conditions. When used as an anode for realistic water-splitting systems, Mn-modified RuO2 performs at 1000 mA cm–2 with a voltage of 1.69 V (Nafion 212 membrane) for proton-exchange membrane water electrolysis, and 1.84 V (UTP 220 diaphragm) for alkaline water electrolysis, exhibiting low degradation and verifying its substantial potential for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信