探索KRAS与单体和afferprotein相互作用的结合和变构机制:基于集成的突变谱和结合能量和变构的热力学分析揭示了由保守通信网络连接的功能热点和隐口袋的多样性

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Mohammed Alshahrani, Vedant Parikh, Brandon Foley, Guang Hu and Gennady Verkhivker
{"title":"探索KRAS与单体和afferprotein相互作用的结合和变构机制:基于集成的突变谱和结合能量和变构的热力学分析揭示了由保守通信网络连接的功能热点和隐口袋的多样性","authors":"Mohammed Alshahrani, Vedant Parikh, Brandon Foley, Guang Hu and Gennady Verkhivker","doi":"10.1039/D5CP00966A","DOIUrl":null,"url":null,"abstract":"<p >KRAS, a historically “undruggable” oncogenic driver, has eluded targeted therapies due to its lack of accessible binding pockets in its active state. This study investigates the conformational dynamics, binding mechanisms, and allosteric communication networks of KRAS in complexes with monobodies (12D1, 12D5) and affimer proteins (K6, K3, K69) to characterize the binding and allosteric mechanisms and hotspots of KRAS binding. Through molecular dynamics simulations, mutational scanning, binding free energy analysis and network-based analyses, we identified conserved allosteric hotspots that serve as critical nodes for long-range communication in KRAS. Key residues in β-strand 4 (F78, L80, F82), α-helix 3 (I93, H95, Y96), β-strand 5 (V114, N116), and α-helix 5 (Y157, L159, R164) consistently emerged as hotspots across diverse binding partners, forming contiguous networks linking functional regions of KRAS. Notably, β-strand 4 acts as a central hub for propagating conformational changes, while the cryptic allosteric pocket centered around H95/Y96 positions targeted by clinically approved inhibitors was identified as a universal hotspot for both binding and allostery. The study also reveals the interplay between structural rigidity and functional flexibility, where stabilization of one region induces compensatory flexibility in others, reflecting KRAS's adaptability to perturbations. We found that monobodies stabilize the switch II region of KRAS, disrupting coupling between switch I and II regions and leading to enhanced mobility in switch I of KRAS. Similarly, affimer K3 leverages the α3-helix as a hinge point to amplify its effects on KRAS dynamics. Mutational scanning and binding free energy analysis highlighted the energetic drivers of KRAS interactions. Revealing key hotspot residues, including H95 and Y96 in the α3 helix, as major contributors to binding affinity and selectivity. Network analysis identified β-strand 4 as a central hub for propagating conformational changes, linking distant functional sites. The predicted allosteric hotspots strongly aligned with experimental data, validating the robustness of the computational approach. Despite distinct binding interfaces, shared hotspots highlight a conserved allosteric infrastructure, reinforcing their universal importance in KRAS signaling. The results of this study can inform rational design of small-molecule inhibitors that mimic the effects of monobodies and affimer proteins, challenging the “undruggable” reputation of KRAS.</p>","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":" 21","pages":" 11242-11263"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing binding and allosteric mechanisms of the KRAS interactions with monobodies and affimer proteins: ensemble-based mutational profiling and thermodynamic analysis of binding energetics and allostery reveal diversity of functional hotspots and cryptic pockets linked by conserved communication network†\",\"authors\":\"Mohammed Alshahrani, Vedant Parikh, Brandon Foley, Guang Hu and Gennady Verkhivker\",\"doi\":\"10.1039/D5CP00966A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >KRAS, a historically “undruggable” oncogenic driver, has eluded targeted therapies due to its lack of accessible binding pockets in its active state. This study investigates the conformational dynamics, binding mechanisms, and allosteric communication networks of KRAS in complexes with monobodies (12D1, 12D5) and affimer proteins (K6, K3, K69) to characterize the binding and allosteric mechanisms and hotspots of KRAS binding. Through molecular dynamics simulations, mutational scanning, binding free energy analysis and network-based analyses, we identified conserved allosteric hotspots that serve as critical nodes for long-range communication in KRAS. Key residues in β-strand 4 (F78, L80, F82), α-helix 3 (I93, H95, Y96), β-strand 5 (V114, N116), and α-helix 5 (Y157, L159, R164) consistently emerged as hotspots across diverse binding partners, forming contiguous networks linking functional regions of KRAS. Notably, β-strand 4 acts as a central hub for propagating conformational changes, while the cryptic allosteric pocket centered around H95/Y96 positions targeted by clinically approved inhibitors was identified as a universal hotspot for both binding and allostery. The study also reveals the interplay between structural rigidity and functional flexibility, where stabilization of one region induces compensatory flexibility in others, reflecting KRAS's adaptability to perturbations. We found that monobodies stabilize the switch II region of KRAS, disrupting coupling between switch I and II regions and leading to enhanced mobility in switch I of KRAS. Similarly, affimer K3 leverages the α3-helix as a hinge point to amplify its effects on KRAS dynamics. Mutational scanning and binding free energy analysis highlighted the energetic drivers of KRAS interactions. Revealing key hotspot residues, including H95 and Y96 in the α3 helix, as major contributors to binding affinity and selectivity. Network analysis identified β-strand 4 as a central hub for propagating conformational changes, linking distant functional sites. The predicted allosteric hotspots strongly aligned with experimental data, validating the robustness of the computational approach. Despite distinct binding interfaces, shared hotspots highlight a conserved allosteric infrastructure, reinforcing their universal importance in KRAS signaling. The results of this study can inform rational design of small-molecule inhibitors that mimic the effects of monobodies and affimer proteins, challenging the “undruggable” reputation of KRAS.</p>\",\"PeriodicalId\":99,\"journal\":{\"name\":\"Physical Chemistry Chemical Physics\",\"volume\":\" 21\",\"pages\":\" 11242-11263\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Chemistry Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00966a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cp/d5cp00966a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

KRAS是一种历史上“不可药物”的致癌驱动因子,由于其在活性状态下缺乏可接近的结合袋,因此无法进行靶向治疗。本研究通过研究KRAS与单体(12D1、12D5)和类型化蛋白(K6、K3、K69)配合物的构象动力学、结合机制和变构通讯网络,表征KRAS的结合和变构机制及结合热点。通过分子动力学模拟、突变扫描、结合自由能分析和基于网络的分析,我们确定了KRAS中作为远程通信关键节点的保守变构热点。β-链4 (F78、L80、F82)、α-链3 (I93、H95、Y96)、β-链5 (V114、N116)和α-链5 (Y157、L159、R164)的关键残基在不同的结合伙伴中一致出现为热点,形成连接KRAS功能区域的连续网络。值得注意的是,β- 4链是传播构象变化的中心枢纽,而临床批准的抑制剂靶向的H95/Y96位点周围的隐变构口袋被认为是结合和变构的普遍热点。该研究还揭示了结构刚性和功能灵活性之间的相互作用,其中一个区域的稳定引起其他区域的补偿性灵活性,反映了KRAS对扰动的适应性。我们发现单体稳定了KRAS的开关II区,破坏了开关I和开关II区之间的耦合,从而增强了KRAS开关I的迁移率。类似地,仿形分子K3利用α3-螺旋作为铰链点来放大其对KRAS动力学的影响。突变扫描和结合自由能分析强调了KRAS相互作用的能量驱动。揭示了关键热点残基,包括α3螺旋上的H95和Y96,是结合亲和力和选择性的主要贡献者。网络分析发现β-链4是传播构象变化的中心枢纽,连接遥远的功能位点。预测的变弹性热点与实验数据高度一致,验证了计算方法的鲁棒性。尽管结合界面不同,但共享热点突出了保守的变构基础设施,加强了它们在KRAS信号传导中的普遍重要性。这项研究的结果可以为合理设计小分子抑制剂提供信息,这些抑制剂可以模仿单体和afferprotein的作用,挑战KRAS“不可药物”的声誉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Probing binding and allosteric mechanisms of the KRAS interactions with monobodies and affimer proteins: ensemble-based mutational profiling and thermodynamic analysis of binding energetics and allostery reveal diversity of functional hotspots and cryptic pockets linked by conserved communication network†

Probing binding and allosteric mechanisms of the KRAS interactions with monobodies and affimer proteins: ensemble-based mutational profiling and thermodynamic analysis of binding energetics and allostery reveal diversity of functional hotspots and cryptic pockets linked by conserved communication network†

KRAS, a historically “undruggable” oncogenic driver, has eluded targeted therapies due to its lack of accessible binding pockets in its active state. This study investigates the conformational dynamics, binding mechanisms, and allosteric communication networks of KRAS in complexes with monobodies (12D1, 12D5) and affimer proteins (K6, K3, K69) to characterize the binding and allosteric mechanisms and hotspots of KRAS binding. Through molecular dynamics simulations, mutational scanning, binding free energy analysis and network-based analyses, we identified conserved allosteric hotspots that serve as critical nodes for long-range communication in KRAS. Key residues in β-strand 4 (F78, L80, F82), α-helix 3 (I93, H95, Y96), β-strand 5 (V114, N116), and α-helix 5 (Y157, L159, R164) consistently emerged as hotspots across diverse binding partners, forming contiguous networks linking functional regions of KRAS. Notably, β-strand 4 acts as a central hub for propagating conformational changes, while the cryptic allosteric pocket centered around H95/Y96 positions targeted by clinically approved inhibitors was identified as a universal hotspot for both binding and allostery. The study also reveals the interplay between structural rigidity and functional flexibility, where stabilization of one region induces compensatory flexibility in others, reflecting KRAS's adaptability to perturbations. We found that monobodies stabilize the switch II region of KRAS, disrupting coupling between switch I and II regions and leading to enhanced mobility in switch I of KRAS. Similarly, affimer K3 leverages the α3-helix as a hinge point to amplify its effects on KRAS dynamics. Mutational scanning and binding free energy analysis highlighted the energetic drivers of KRAS interactions. Revealing key hotspot residues, including H95 and Y96 in the α3 helix, as major contributors to binding affinity and selectivity. Network analysis identified β-strand 4 as a central hub for propagating conformational changes, linking distant functional sites. The predicted allosteric hotspots strongly aligned with experimental data, validating the robustness of the computational approach. Despite distinct binding interfaces, shared hotspots highlight a conserved allosteric infrastructure, reinforcing their universal importance in KRAS signaling. The results of this study can inform rational design of small-molecule inhibitors that mimic the effects of monobodies and affimer proteins, challenging the “undruggable” reputation of KRAS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信