Heino Falcke, Michael F. Wondrak and Walter D. van Suijlekom
{"title":"引力对产生的恒星残余物寿命的上限","authors":"Heino Falcke, Michael F. Wondrak and Walter D. van Suijlekom","doi":"10.1088/1475-7516/2025/05/023","DOIUrl":null,"url":null,"abstract":"Black holes are assumed to decay via Hawking radiation. Recently we found evidence that spacetime curvature alone without the need for an event horizon leads to black hole evaporation. Here we investigate the evaporation rate and decay time of a non-rotating star of constant density due to spacetime curvature-induced pair production and apply this to compact stellar remnants such as neutron stars and white dwarfs. We calculate the creation of virtual pairs of massless scalar particles in spherically symmetric asymptotically flat curved spacetimes. This calculation is based on covariant perturbation theory with the quantum field representing, e.g., gravitons or photons. We find that in this picture the evaporation timescale, τ, of massive objects scales with the average mass density, ρ, as τ ∝ ρ-3/2. The maximum age of neutron stars, τ ∼ 1068 yr, is comparable to that of low-mass stellar black holes. White dwarfs, supermassive black holes, and dark matter supercluster halos evaporate on longer, but also finite timescales. Neutron stars and white dwarfs decay similarly to black holes, ending in an explosive event when they become unstable. This sets a general upper limit for the lifetime of matter in the universe, which in general is much longer than the Hubble-Lemaître time, although primordial objects with densities above ρmax ≈ 3 × 1053 g/cm3 should have dissolved by now. As a consequence, fossil stellar remnants from a previous universe could be present in our current universe only if the recurrence time of star forming universes is smaller than about ∼ 1068 years.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"31 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An upper limit to the lifetime of stellar remnants from gravitational pair production\",\"authors\":\"Heino Falcke, Michael F. Wondrak and Walter D. van Suijlekom\",\"doi\":\"10.1088/1475-7516/2025/05/023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Black holes are assumed to decay via Hawking radiation. Recently we found evidence that spacetime curvature alone without the need for an event horizon leads to black hole evaporation. Here we investigate the evaporation rate and decay time of a non-rotating star of constant density due to spacetime curvature-induced pair production and apply this to compact stellar remnants such as neutron stars and white dwarfs. We calculate the creation of virtual pairs of massless scalar particles in spherically symmetric asymptotically flat curved spacetimes. This calculation is based on covariant perturbation theory with the quantum field representing, e.g., gravitons or photons. We find that in this picture the evaporation timescale, τ, of massive objects scales with the average mass density, ρ, as τ ∝ ρ-3/2. The maximum age of neutron stars, τ ∼ 1068 yr, is comparable to that of low-mass stellar black holes. White dwarfs, supermassive black holes, and dark matter supercluster halos evaporate on longer, but also finite timescales. Neutron stars and white dwarfs decay similarly to black holes, ending in an explosive event when they become unstable. This sets a general upper limit for the lifetime of matter in the universe, which in general is much longer than the Hubble-Lemaître time, although primordial objects with densities above ρmax ≈ 3 × 1053 g/cm3 should have dissolved by now. As a consequence, fossil stellar remnants from a previous universe could be present in our current universe only if the recurrence time of star forming universes is smaller than about ∼ 1068 years.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/05/023\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/05/023","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
An upper limit to the lifetime of stellar remnants from gravitational pair production
Black holes are assumed to decay via Hawking radiation. Recently we found evidence that spacetime curvature alone without the need for an event horizon leads to black hole evaporation. Here we investigate the evaporation rate and decay time of a non-rotating star of constant density due to spacetime curvature-induced pair production and apply this to compact stellar remnants such as neutron stars and white dwarfs. We calculate the creation of virtual pairs of massless scalar particles in spherically symmetric asymptotically flat curved spacetimes. This calculation is based on covariant perturbation theory with the quantum field representing, e.g., gravitons or photons. We find that in this picture the evaporation timescale, τ, of massive objects scales with the average mass density, ρ, as τ ∝ ρ-3/2. The maximum age of neutron stars, τ ∼ 1068 yr, is comparable to that of low-mass stellar black holes. White dwarfs, supermassive black holes, and dark matter supercluster halos evaporate on longer, but also finite timescales. Neutron stars and white dwarfs decay similarly to black holes, ending in an explosive event when they become unstable. This sets a general upper limit for the lifetime of matter in the universe, which in general is much longer than the Hubble-Lemaître time, although primordial objects with densities above ρmax ≈ 3 × 1053 g/cm3 should have dissolved by now. As a consequence, fossil stellar remnants from a previous universe could be present in our current universe only if the recurrence time of star forming universes is smaller than about ∼ 1068 years.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.