{"title":"铂(II)液晶共组装中圆偏振发光的快速发射色开关","authors":"Guo Zou, Qihuan Li, Zhenhao Jiang, Wentong Gao, Yixiang Cheng","doi":"10.1039/d5sc02285a","DOIUrl":null,"url":null,"abstract":"Developing stimuli-responsive circularly polarized luminescence (CPL) materials that feature fast emission color switching for advanced information encryption presents a scientifically significant yet formidable challenge. Herein, we construct a supramolecular co-assembly system demonstrating transiently responsive CPL emission color switching, enabling mechanically-modulated information encryption. Combining a highly luminescent Pt(II) liquid crystal (Pt8) with the anchored binaphthyl inducers (R/S-M) form chiral co-assemblies (R/S-M)0.03-(Pt8)0.97, which assembles into twisted nanobelts (180 ºC) and helical nanofibers (260 ºC) exhibiting green (λem = 545 nm, gem = 0.038) and red CPL (λem = 640 nm, gem = 0.133), respectively. Notably, mechanical grinding transforms the 180 ºC-annealed (R/S-M)0.03-(Pt8)0.97 into nanoparticles, resulting in a fast dynamic switching of CPL emission color from green to orange-red (λem: 545 → 625 nm, gem: 0.038 → 0.058). Reheating the grinding films (R/S-M)0.03-(Pt8)0.97 to 180 ºC restores the initial green CPL of the nanobelts. Based on the fast CPL emission color switching, we demonstrate the applications of these supramolecular chiral co-assemblies for mechanically-modulated information encryption.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"112 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Emission Color Switching of Circularly Polarized Luminescence in Platinum(II) Liquid Crystalline Co-Assembly\",\"authors\":\"Guo Zou, Qihuan Li, Zhenhao Jiang, Wentong Gao, Yixiang Cheng\",\"doi\":\"10.1039/d5sc02285a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing stimuli-responsive circularly polarized luminescence (CPL) materials that feature fast emission color switching for advanced information encryption presents a scientifically significant yet formidable challenge. Herein, we construct a supramolecular co-assembly system demonstrating transiently responsive CPL emission color switching, enabling mechanically-modulated information encryption. Combining a highly luminescent Pt(II) liquid crystal (Pt8) with the anchored binaphthyl inducers (R/S-M) form chiral co-assemblies (R/S-M)0.03-(Pt8)0.97, which assembles into twisted nanobelts (180 ºC) and helical nanofibers (260 ºC) exhibiting green (λem = 545 nm, gem = 0.038) and red CPL (λem = 640 nm, gem = 0.133), respectively. Notably, mechanical grinding transforms the 180 ºC-annealed (R/S-M)0.03-(Pt8)0.97 into nanoparticles, resulting in a fast dynamic switching of CPL emission color from green to orange-red (λem: 545 → 625 nm, gem: 0.038 → 0.058). Reheating the grinding films (R/S-M)0.03-(Pt8)0.97 to 180 ºC restores the initial green CPL of the nanobelts. Based on the fast CPL emission color switching, we demonstrate the applications of these supramolecular chiral co-assemblies for mechanically-modulated information encryption.\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d5sc02285a\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc02285a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Fast Emission Color Switching of Circularly Polarized Luminescence in Platinum(II) Liquid Crystalline Co-Assembly
Developing stimuli-responsive circularly polarized luminescence (CPL) materials that feature fast emission color switching for advanced information encryption presents a scientifically significant yet formidable challenge. Herein, we construct a supramolecular co-assembly system demonstrating transiently responsive CPL emission color switching, enabling mechanically-modulated information encryption. Combining a highly luminescent Pt(II) liquid crystal (Pt8) with the anchored binaphthyl inducers (R/S-M) form chiral co-assemblies (R/S-M)0.03-(Pt8)0.97, which assembles into twisted nanobelts (180 ºC) and helical nanofibers (260 ºC) exhibiting green (λem = 545 nm, gem = 0.038) and red CPL (λem = 640 nm, gem = 0.133), respectively. Notably, mechanical grinding transforms the 180 ºC-annealed (R/S-M)0.03-(Pt8)0.97 into nanoparticles, resulting in a fast dynamic switching of CPL emission color from green to orange-red (λem: 545 → 625 nm, gem: 0.038 → 0.058). Reheating the grinding films (R/S-M)0.03-(Pt8)0.97 to 180 ºC restores the initial green CPL of the nanobelts. Based on the fast CPL emission color switching, we demonstrate the applications of these supramolecular chiral co-assemblies for mechanically-modulated information encryption.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.