{"title":"通过CNN透镜的大质量ν:在弱透镜中解释场级中微子质量信息","authors":"Malika Golshan and Adrian E. Bayer","doi":"10.1088/1475-7516/2025/05/024","DOIUrl":null,"url":null,"abstract":"Modern cosmological surveys probe the Universe deep into the nonlinear regime, where massive neutrinos suppress cosmic structure. Traditional cosmological analyses, which use the 2-point correlation function to extract information, are no longer optimal in the nonlinear regime, and there is thus much interest in extracting beyond-2-point information to improve constraints on neutrino mass. Quantifying and interpreting the beyond-2-point information is thus a pressing task. We study the field-level information in weak lensing convergence maps using convolution neural networks. We find that the network performance increases as higher source redshifts and smaller scales are considered — investigating up to a source redshift of 2.5 and ℓmax ≃ 104 — verifying that massive neutrinos leave a distinct effect on weak lensing. However, the performance of the network significantly drops after scaling out the 2-point information from the maps, implying that most of the field-level information can be found in the 2-point correlation function alone. We quantify these findings in terms of the likelihood ratio and also use Integrated Gradient saliency maps to interpret which parts of the map the network is learning the most from. We find that, in the absence of noise, the network extracts a similar amount of information from the most overdense and underdense regions. However, upon adding noise, the information in underdense regions is distorted as noise disproportionately washes out void-like structures.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"35 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Massive νs through the CNN lens: interpreting the field-level neutrino mass information in weak lensing\",\"authors\":\"Malika Golshan and Adrian E. Bayer\",\"doi\":\"10.1088/1475-7516/2025/05/024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern cosmological surveys probe the Universe deep into the nonlinear regime, where massive neutrinos suppress cosmic structure. Traditional cosmological analyses, which use the 2-point correlation function to extract information, are no longer optimal in the nonlinear regime, and there is thus much interest in extracting beyond-2-point information to improve constraints on neutrino mass. Quantifying and interpreting the beyond-2-point information is thus a pressing task. We study the field-level information in weak lensing convergence maps using convolution neural networks. We find that the network performance increases as higher source redshifts and smaller scales are considered — investigating up to a source redshift of 2.5 and ℓmax ≃ 104 — verifying that massive neutrinos leave a distinct effect on weak lensing. However, the performance of the network significantly drops after scaling out the 2-point information from the maps, implying that most of the field-level information can be found in the 2-point correlation function alone. We quantify these findings in terms of the likelihood ratio and also use Integrated Gradient saliency maps to interpret which parts of the map the network is learning the most from. We find that, in the absence of noise, the network extracts a similar amount of information from the most overdense and underdense regions. However, upon adding noise, the information in underdense regions is distorted as noise disproportionately washes out void-like structures.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/05/024\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/05/024","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Massive νs through the CNN lens: interpreting the field-level neutrino mass information in weak lensing
Modern cosmological surveys probe the Universe deep into the nonlinear regime, where massive neutrinos suppress cosmic structure. Traditional cosmological analyses, which use the 2-point correlation function to extract information, are no longer optimal in the nonlinear regime, and there is thus much interest in extracting beyond-2-point information to improve constraints on neutrino mass. Quantifying and interpreting the beyond-2-point information is thus a pressing task. We study the field-level information in weak lensing convergence maps using convolution neural networks. We find that the network performance increases as higher source redshifts and smaller scales are considered — investigating up to a source redshift of 2.5 and ℓmax ≃ 104 — verifying that massive neutrinos leave a distinct effect on weak lensing. However, the performance of the network significantly drops after scaling out the 2-point information from the maps, implying that most of the field-level information can be found in the 2-point correlation function alone. We quantify these findings in terms of the likelihood ratio and also use Integrated Gradient saliency maps to interpret which parts of the map the network is learning the most from. We find that, in the absence of noise, the network extracts a similar amount of information from the most overdense and underdense regions. However, upon adding noise, the information in underdense regions is distorted as noise disproportionately washes out void-like structures.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.