利用DESI-Y1和SDSS-IV数据集确定horva - lifshitz引力中的H 0 $H_{0}$和r d$ r_d$:缓解哈勃张力

IF 2.5 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Himanshu Chaudhary, Ujjal Debnath, S. K. J. Pacif, G. Mustafa
{"title":"利用DESI-Y1和SDSS-IV数据集确定horva - lifshitz引力中的H 0 $H_{0}$和r d$ r_d$:缓解哈勃张力","authors":"Himanshu Chaudhary,&nbsp;Ujjal Debnath,&nbsp;S. K. J. Pacif,&nbsp;G. Mustafa","doi":"10.1002/andp.202400421","DOIUrl":null,"url":null,"abstract":"<p>Observational data are used from Baryon Acoustic Oscillations (DESI-Y1 and SDSS-IV), the <span></span><math>\n <semantics>\n <msup>\n <mtext>Pantheon</mtext>\n <mo>+</mo>\n </msup>\n <annotation>$\\text{Pantheon}^+$</annotation>\n </semantics></math> sample, and Cosmic Chronometers measurements to constrain key cosmological parameters within the framework of Hořava-Lifshitz (HL) gravity. Specifically, the posterior distribution of Hubble constant (<span></span><math>\n <semantics>\n <msub>\n <mi>H</mi>\n <mn>0</mn>\n </msub>\n <annotation>$ H_0$</annotation>\n </semantics></math>), the sound horizon (<span></span><math>\n <semantics>\n <msub>\n <mi>r</mi>\n <mi>d</mi>\n </msub>\n <annotation>$ r_d$</annotation>\n </semantics></math>), and the running parameter <span></span><math>\n <semantics>\n <mi>λ</mi>\n <annotation>$ \\lambda$</annotation>\n </semantics></math> is extracted, which governs the flow between the UV and Infra-Red (IR) regimes. By treating <span></span><math>\n <semantics>\n <msub>\n <mi>r</mi>\n <mi>d</mi>\n </msub>\n <annotation>$ r_d$</annotation>\n </semantics></math> as a free parameter, this approach remains independent of early-Universe and recombination assumptions. These analysis yields <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mn>0</mn>\n </msub>\n <mo>=</mo>\n <mn>71</mn>\n <mo>.</mo>\n <msubsup>\n <mn>1</mn>\n <mrow>\n <mo>−</mo>\n <mn>1.7</mn>\n </mrow>\n <mrow>\n <mo>+</mo>\n <mn>1.5</mn>\n </mrow>\n </msubsup>\n <mspace></mspace>\n <mtext>km</mtext>\n <mspace></mspace>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mspace></mspace>\n <msup>\n <mtext>Mpc</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$ H_0 = 71.1_{-1.7}^{+1.5} \\, \\text{km} \\, \\text{s}^{-1} \\, \\text{Mpc}^{-1}$</annotation>\n </semantics></math>, suggesting that the HL gravity model alleviates the Hubble tension, reducing the discrepancy from more than <span></span><math>\n <semantics>\n <mrow>\n <mn>4.89</mn>\n <mi>σ</mi>\n </mrow>\n <annotation>$ 4.89 \\sigma$</annotation>\n </semantics></math> (between Planck and Riess) to approximately <span></span><math>\n <semantics>\n <mrow>\n <mn>0.97</mn>\n <mi>σ</mi>\n </mrow>\n <annotation>$ 0.97 \\sigma$</annotation>\n </semantics></math>. Additionally, the model predicts <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Ω</mi>\n <mrow>\n <mi>m</mi>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>0.2803</mn>\n </mrow>\n <annotation>$ \\Omega _{m0} = 0.2803$</annotation>\n </semantics></math>, in alignment with values reported by the DESI-Y1, and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>d</mi>\n </msub>\n <mo>=</mo>\n <mn>146.6</mn>\n <mo>±</mo>\n <mn>2.4</mn>\n <mspace></mspace>\n <mtext>Mpc</mtext>\n </mrow>\n <annotation>$ r_d = 146.6 \\pm 2.4 \\, \\text{Mpc}$</annotation>\n </semantics></math>, which is in close agreement with the value predicted by the Planck collaboration. The spatial curvature parameter is <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Ω</mi>\n <mrow>\n <mi>k</mi>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>0.0210</mn>\n </mrow>\n <annotation>$ \\Omega _{k0} = 0.0210$</annotation>\n </semantics></math>, consistent with predictions from the Wilkinson Microwave Anisotropy Probe (WMAP), suggesting a flat Universe. Additionally, the running parameter <span></span><math>\n <semantics>\n <mi>λ</mi>\n <annotation>$ \\lambda$</annotation>\n </semantics></math> is constrained to lie near its IR limit (<span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>=</mo>\n <mn>1.1439</mn>\n <mo>±</mo>\n <mn>0.0098</mn>\n </mrow>\n <annotation>$ \\lambda = 1.1439 \\pm 0.0098$</annotation>\n </semantics></math>), indicating a restoration of Lorentz invariance at cosmological scales and a behavior close to General Relativity. The viability of the Hořava–Lifshitz model is evaluated in comparison to the standard <span></span><math>\n <semantics>\n <mrow>\n <mi>Λ</mi>\n <mtext>CDM</mtext>\n </mrow>\n <annotation>$ \\Lambda\\text{CDM}$</annotation>\n </semantics></math> model using various Statistical Metrics.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of \\n \\n \\n H\\n 0\\n \\n $H_{0}$\\n and \\n \\n \\n r\\n d\\n \\n $r_d$\\n in Horava–Lifshitz Gravity Using DESI-Y1 and SDSS-IV Dataset: Alleviating the Hubble Tension\",\"authors\":\"Himanshu Chaudhary,&nbsp;Ujjal Debnath,&nbsp;S. K. J. Pacif,&nbsp;G. Mustafa\",\"doi\":\"10.1002/andp.202400421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Observational data are used from Baryon Acoustic Oscillations (DESI-Y1 and SDSS-IV), the <span></span><math>\\n <semantics>\\n <msup>\\n <mtext>Pantheon</mtext>\\n <mo>+</mo>\\n </msup>\\n <annotation>$\\\\text{Pantheon}^+$</annotation>\\n </semantics></math> sample, and Cosmic Chronometers measurements to constrain key cosmological parameters within the framework of Hořava-Lifshitz (HL) gravity. Specifically, the posterior distribution of Hubble constant (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>H</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$ H_0$</annotation>\\n </semantics></math>), the sound horizon (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>r</mi>\\n <mi>d</mi>\\n </msub>\\n <annotation>$ r_d$</annotation>\\n </semantics></math>), and the running parameter <span></span><math>\\n <semantics>\\n <mi>λ</mi>\\n <annotation>$ \\\\lambda$</annotation>\\n </semantics></math> is extracted, which governs the flow between the UV and Infra-Red (IR) regimes. By treating <span></span><math>\\n <semantics>\\n <msub>\\n <mi>r</mi>\\n <mi>d</mi>\\n </msub>\\n <annotation>$ r_d$</annotation>\\n </semantics></math> as a free parameter, this approach remains independent of early-Universe and recombination assumptions. These analysis yields <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>=</mo>\\n <mn>71</mn>\\n <mo>.</mo>\\n <msubsup>\\n <mn>1</mn>\\n <mrow>\\n <mo>−</mo>\\n <mn>1.7</mn>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n <mn>1.5</mn>\\n </mrow>\\n </msubsup>\\n <mspace></mspace>\\n <mtext>km</mtext>\\n <mspace></mspace>\\n <msup>\\n <mi>s</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mspace></mspace>\\n <msup>\\n <mtext>Mpc</mtext>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$ H_0 = 71.1_{-1.7}^{+1.5} \\\\, \\\\text{km} \\\\, \\\\text{s}^{-1} \\\\, \\\\text{Mpc}^{-1}$</annotation>\\n </semantics></math>, suggesting that the HL gravity model alleviates the Hubble tension, reducing the discrepancy from more than <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>4.89</mn>\\n <mi>σ</mi>\\n </mrow>\\n <annotation>$ 4.89 \\\\sigma$</annotation>\\n </semantics></math> (between Planck and Riess) to approximately <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0.97</mn>\\n <mi>σ</mi>\\n </mrow>\\n <annotation>$ 0.97 \\\\sigma$</annotation>\\n </semantics></math>. Additionally, the model predicts <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Ω</mi>\\n <mrow>\\n <mi>m</mi>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mn>0.2803</mn>\\n </mrow>\\n <annotation>$ \\\\Omega _{m0} = 0.2803$</annotation>\\n </semantics></math>, in alignment with values reported by the DESI-Y1, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n <mi>d</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>146.6</mn>\\n <mo>±</mo>\\n <mn>2.4</mn>\\n <mspace></mspace>\\n <mtext>Mpc</mtext>\\n </mrow>\\n <annotation>$ r_d = 146.6 \\\\pm 2.4 \\\\, \\\\text{Mpc}$</annotation>\\n </semantics></math>, which is in close agreement with the value predicted by the Planck collaboration. The spatial curvature parameter is <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Ω</mi>\\n <mrow>\\n <mi>k</mi>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mn>0.0210</mn>\\n </mrow>\\n <annotation>$ \\\\Omega _{k0} = 0.0210$</annotation>\\n </semantics></math>, consistent with predictions from the Wilkinson Microwave Anisotropy Probe (WMAP), suggesting a flat Universe. Additionally, the running parameter <span></span><math>\\n <semantics>\\n <mi>λ</mi>\\n <annotation>$ \\\\lambda$</annotation>\\n </semantics></math> is constrained to lie near its IR limit (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mo>=</mo>\\n <mn>1.1439</mn>\\n <mo>±</mo>\\n <mn>0.0098</mn>\\n </mrow>\\n <annotation>$ \\\\lambda = 1.1439 \\\\pm 0.0098$</annotation>\\n </semantics></math>), indicating a restoration of Lorentz invariance at cosmological scales and a behavior close to General Relativity. The viability of the Hořava–Lifshitz model is evaluated in comparison to the standard <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Λ</mi>\\n <mtext>CDM</mtext>\\n </mrow>\\n <annotation>$ \\\\Lambda\\\\text{CDM}$</annotation>\\n </semantics></math> model using various Statistical Metrics.</p>\",\"PeriodicalId\":7896,\"journal\":{\"name\":\"Annalen der Physik\",\"volume\":\"537 5\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annalen der Physik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400421\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400421","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

观测数据来自重子声学振荡(DESI-Y1和SDSS-IV), Pantheon + $\text{Pantheon}^+$样本和Cosmic chronometer测量,以约束Hořava-Lifshitz (HL)重力框架内的关键宇宙学参数。具体提取哈勃常数(H 0 $ H_0$)、声视界(r d $ r_d$)和运行参数λ $ \lambda$的后验分布,它控制着紫外线和红外线(IR)之间的流动。通过将r d $ r_d$视为自由参数,这种方法仍然独立于早期宇宙和重组假设。这些分析得到h0 = 71。1−1.7 + 1.5 km s−1 Mpc−1 $ H_0 = 71.1_{-1.7}^{+1.5} \, \text{km} \, \text{s}^{-1} \, \text{Mpc}^{-1}$,表明HL引力模型减轻了哈勃张力;将普朗克和里斯之间的差异从超过4.89 σ $ 4.89 \sigma$减小到大约0.97 σ $ 0.97 \sigma$。此外,该模型预测Ω m 0 = 0.2803 $ \Omega _{m0} = 0.2803$,与DESI-Y1报告的值一致。r d = 146.6±2.4 Mpc $ r_d = 146.6 \pm 2.4 \, \text{Mpc}$,与普朗克合作的预测值非常接近。空间曲率参数为Ω k 0 = 0.0210 $ \Omega _{k0} = 0.0210$,与威尔金森微波各向异性探测器(WMAP)的预测一致,表明宇宙是平坦的。此外,运行参数λ $ \lambda$被约束在其IR极限附近(λ = 1.1439±0.0098 $ \lambda = 1.1439 \pm 0.0098$),表明在宇宙尺度上恢复了洛伦兹不变性,并且行为接近广义相对论。将Hořava-Lifshitz模型的可行性与使用各种统计度量的标准Λ CDM $ \Lambda\text{CDM}$模型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Determination of 
         
            
               H
               0
            
            $H_{0}$
          and 
         
            
               r
               d
            
            $r_d$
          in Horava–Lifshitz Gravity Using DESI-Y1 and SDSS-IV Dataset: Alleviating the Hubble Tension

Determination of H 0 $H_{0}$ and r d $r_d$ in Horava–Lifshitz Gravity Using DESI-Y1 and SDSS-IV Dataset: Alleviating the Hubble Tension

Observational data are used from Baryon Acoustic Oscillations (DESI-Y1 and SDSS-IV), the Pantheon + $\text{Pantheon}^+$ sample, and Cosmic Chronometers measurements to constrain key cosmological parameters within the framework of Hořava-Lifshitz (HL) gravity. Specifically, the posterior distribution of Hubble constant ( H 0 $ H_0$ ), the sound horizon ( r d $ r_d$ ), and the running parameter λ $ \lambda$ is extracted, which governs the flow between the UV and Infra-Red (IR) regimes. By treating r d $ r_d$ as a free parameter, this approach remains independent of early-Universe and recombination assumptions. These analysis yields H 0 = 71 . 1 1.7 + 1.5 km s 1 Mpc 1 $ H_0 = 71.1_{-1.7}^{+1.5} \, \text{km} \, \text{s}^{-1} \, \text{Mpc}^{-1}$ , suggesting that the HL gravity model alleviates the Hubble tension, reducing the discrepancy from more than 4.89 σ $ 4.89 \sigma$ (between Planck and Riess) to approximately 0.97 σ $ 0.97 \sigma$ . Additionally, the model predicts Ω m 0 = 0.2803 $ \Omega _{m0} = 0.2803$ , in alignment with values reported by the DESI-Y1, and r d = 146.6 ± 2.4 Mpc $ r_d = 146.6 \pm 2.4 \, \text{Mpc}$ , which is in close agreement with the value predicted by the Planck collaboration. The spatial curvature parameter is Ω k 0 = 0.0210 $ \Omega _{k0} = 0.0210$ , consistent with predictions from the Wilkinson Microwave Anisotropy Probe (WMAP), suggesting a flat Universe. Additionally, the running parameter λ $ \lambda$ is constrained to lie near its IR limit ( λ = 1.1439 ± 0.0098 $ \lambda = 1.1439 \pm 0.0098$ ), indicating a restoration of Lorentz invariance at cosmological scales and a behavior close to General Relativity. The viability of the Hořava–Lifshitz model is evaluated in comparison to the standard Λ CDM $ \Lambda\text{CDM}$ model using various Statistical Metrics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annalen der Physik
Annalen der Physik 物理-物理:综合
CiteScore
4.50
自引率
8.30%
发文量
202
审稿时长
3 months
期刊介绍: Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信