Himanshu Chaudhary, Ujjal Debnath, S. K. J. Pacif, G. Mustafa
{"title":"利用DESI-Y1和SDSS-IV数据集确定horva - lifshitz引力中的H 0 $H_{0}$和r d$ r_d$:缓解哈勃张力","authors":"Himanshu Chaudhary, Ujjal Debnath, S. K. J. Pacif, G. Mustafa","doi":"10.1002/andp.202400421","DOIUrl":null,"url":null,"abstract":"<p>Observational data are used from Baryon Acoustic Oscillations (DESI-Y1 and SDSS-IV), the <span></span><math>\n <semantics>\n <msup>\n <mtext>Pantheon</mtext>\n <mo>+</mo>\n </msup>\n <annotation>$\\text{Pantheon}^+$</annotation>\n </semantics></math> sample, and Cosmic Chronometers measurements to constrain key cosmological parameters within the framework of Hořava-Lifshitz (HL) gravity. Specifically, the posterior distribution of Hubble constant (<span></span><math>\n <semantics>\n <msub>\n <mi>H</mi>\n <mn>0</mn>\n </msub>\n <annotation>$ H_0$</annotation>\n </semantics></math>), the sound horizon (<span></span><math>\n <semantics>\n <msub>\n <mi>r</mi>\n <mi>d</mi>\n </msub>\n <annotation>$ r_d$</annotation>\n </semantics></math>), and the running parameter <span></span><math>\n <semantics>\n <mi>λ</mi>\n <annotation>$ \\lambda$</annotation>\n </semantics></math> is extracted, which governs the flow between the UV and Infra-Red (IR) regimes. By treating <span></span><math>\n <semantics>\n <msub>\n <mi>r</mi>\n <mi>d</mi>\n </msub>\n <annotation>$ r_d$</annotation>\n </semantics></math> as a free parameter, this approach remains independent of early-Universe and recombination assumptions. These analysis yields <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mn>0</mn>\n </msub>\n <mo>=</mo>\n <mn>71</mn>\n <mo>.</mo>\n <msubsup>\n <mn>1</mn>\n <mrow>\n <mo>−</mo>\n <mn>1.7</mn>\n </mrow>\n <mrow>\n <mo>+</mo>\n <mn>1.5</mn>\n </mrow>\n </msubsup>\n <mspace></mspace>\n <mtext>km</mtext>\n <mspace></mspace>\n <msup>\n <mi>s</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n <mspace></mspace>\n <msup>\n <mtext>Mpc</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$ H_0 = 71.1_{-1.7}^{+1.5} \\, \\text{km} \\, \\text{s}^{-1} \\, \\text{Mpc}^{-1}$</annotation>\n </semantics></math>, suggesting that the HL gravity model alleviates the Hubble tension, reducing the discrepancy from more than <span></span><math>\n <semantics>\n <mrow>\n <mn>4.89</mn>\n <mi>σ</mi>\n </mrow>\n <annotation>$ 4.89 \\sigma$</annotation>\n </semantics></math> (between Planck and Riess) to approximately <span></span><math>\n <semantics>\n <mrow>\n <mn>0.97</mn>\n <mi>σ</mi>\n </mrow>\n <annotation>$ 0.97 \\sigma$</annotation>\n </semantics></math>. Additionally, the model predicts <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Ω</mi>\n <mrow>\n <mi>m</mi>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>0.2803</mn>\n </mrow>\n <annotation>$ \\Omega _{m0} = 0.2803$</annotation>\n </semantics></math>, in alignment with values reported by the DESI-Y1, and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>r</mi>\n <mi>d</mi>\n </msub>\n <mo>=</mo>\n <mn>146.6</mn>\n <mo>±</mo>\n <mn>2.4</mn>\n <mspace></mspace>\n <mtext>Mpc</mtext>\n </mrow>\n <annotation>$ r_d = 146.6 \\pm 2.4 \\, \\text{Mpc}$</annotation>\n </semantics></math>, which is in close agreement with the value predicted by the Planck collaboration. The spatial curvature parameter is <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Ω</mi>\n <mrow>\n <mi>k</mi>\n <mn>0</mn>\n </mrow>\n </msub>\n <mo>=</mo>\n <mn>0.0210</mn>\n </mrow>\n <annotation>$ \\Omega _{k0} = 0.0210$</annotation>\n </semantics></math>, consistent with predictions from the Wilkinson Microwave Anisotropy Probe (WMAP), suggesting a flat Universe. Additionally, the running parameter <span></span><math>\n <semantics>\n <mi>λ</mi>\n <annotation>$ \\lambda$</annotation>\n </semantics></math> is constrained to lie near its IR limit (<span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>=</mo>\n <mn>1.1439</mn>\n <mo>±</mo>\n <mn>0.0098</mn>\n </mrow>\n <annotation>$ \\lambda = 1.1439 \\pm 0.0098$</annotation>\n </semantics></math>), indicating a restoration of Lorentz invariance at cosmological scales and a behavior close to General Relativity. The viability of the Hořava–Lifshitz model is evaluated in comparison to the standard <span></span><math>\n <semantics>\n <mrow>\n <mi>Λ</mi>\n <mtext>CDM</mtext>\n </mrow>\n <annotation>$ \\Lambda\\text{CDM}$</annotation>\n </semantics></math> model using various Statistical Metrics.</p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of \\n \\n \\n H\\n 0\\n \\n $H_{0}$\\n and \\n \\n \\n r\\n d\\n \\n $r_d$\\n in Horava–Lifshitz Gravity Using DESI-Y1 and SDSS-IV Dataset: Alleviating the Hubble Tension\",\"authors\":\"Himanshu Chaudhary, Ujjal Debnath, S. K. J. Pacif, G. Mustafa\",\"doi\":\"10.1002/andp.202400421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Observational data are used from Baryon Acoustic Oscillations (DESI-Y1 and SDSS-IV), the <span></span><math>\\n <semantics>\\n <msup>\\n <mtext>Pantheon</mtext>\\n <mo>+</mo>\\n </msup>\\n <annotation>$\\\\text{Pantheon}^+$</annotation>\\n </semantics></math> sample, and Cosmic Chronometers measurements to constrain key cosmological parameters within the framework of Hořava-Lifshitz (HL) gravity. Specifically, the posterior distribution of Hubble constant (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>H</mi>\\n <mn>0</mn>\\n </msub>\\n <annotation>$ H_0$</annotation>\\n </semantics></math>), the sound horizon (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>r</mi>\\n <mi>d</mi>\\n </msub>\\n <annotation>$ r_d$</annotation>\\n </semantics></math>), and the running parameter <span></span><math>\\n <semantics>\\n <mi>λ</mi>\\n <annotation>$ \\\\lambda$</annotation>\\n </semantics></math> is extracted, which governs the flow between the UV and Infra-Red (IR) regimes. By treating <span></span><math>\\n <semantics>\\n <msub>\\n <mi>r</mi>\\n <mi>d</mi>\\n </msub>\\n <annotation>$ r_d$</annotation>\\n </semantics></math> as a free parameter, this approach remains independent of early-Universe and recombination assumptions. These analysis yields <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mn>0</mn>\\n </msub>\\n <mo>=</mo>\\n <mn>71</mn>\\n <mo>.</mo>\\n <msubsup>\\n <mn>1</mn>\\n <mrow>\\n <mo>−</mo>\\n <mn>1.7</mn>\\n </mrow>\\n <mrow>\\n <mo>+</mo>\\n <mn>1.5</mn>\\n </mrow>\\n </msubsup>\\n <mspace></mspace>\\n <mtext>km</mtext>\\n <mspace></mspace>\\n <msup>\\n <mi>s</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n <mspace></mspace>\\n <msup>\\n <mtext>Mpc</mtext>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$ H_0 = 71.1_{-1.7}^{+1.5} \\\\, \\\\text{km} \\\\, \\\\text{s}^{-1} \\\\, \\\\text{Mpc}^{-1}$</annotation>\\n </semantics></math>, suggesting that the HL gravity model alleviates the Hubble tension, reducing the discrepancy from more than <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>4.89</mn>\\n <mi>σ</mi>\\n </mrow>\\n <annotation>$ 4.89 \\\\sigma$</annotation>\\n </semantics></math> (between Planck and Riess) to approximately <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0.97</mn>\\n <mi>σ</mi>\\n </mrow>\\n <annotation>$ 0.97 \\\\sigma$</annotation>\\n </semantics></math>. Additionally, the model predicts <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Ω</mi>\\n <mrow>\\n <mi>m</mi>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mn>0.2803</mn>\\n </mrow>\\n <annotation>$ \\\\Omega _{m0} = 0.2803$</annotation>\\n </semantics></math>, in alignment with values reported by the DESI-Y1, and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>r</mi>\\n <mi>d</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>146.6</mn>\\n <mo>±</mo>\\n <mn>2.4</mn>\\n <mspace></mspace>\\n <mtext>Mpc</mtext>\\n </mrow>\\n <annotation>$ r_d = 146.6 \\\\pm 2.4 \\\\, \\\\text{Mpc}$</annotation>\\n </semantics></math>, which is in close agreement with the value predicted by the Planck collaboration. The spatial curvature parameter is <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Ω</mi>\\n <mrow>\\n <mi>k</mi>\\n <mn>0</mn>\\n </mrow>\\n </msub>\\n <mo>=</mo>\\n <mn>0.0210</mn>\\n </mrow>\\n <annotation>$ \\\\Omega _{k0} = 0.0210$</annotation>\\n </semantics></math>, consistent with predictions from the Wilkinson Microwave Anisotropy Probe (WMAP), suggesting a flat Universe. Additionally, the running parameter <span></span><math>\\n <semantics>\\n <mi>λ</mi>\\n <annotation>$ \\\\lambda$</annotation>\\n </semantics></math> is constrained to lie near its IR limit (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n <mo>=</mo>\\n <mn>1.1439</mn>\\n <mo>±</mo>\\n <mn>0.0098</mn>\\n </mrow>\\n <annotation>$ \\\\lambda = 1.1439 \\\\pm 0.0098$</annotation>\\n </semantics></math>), indicating a restoration of Lorentz invariance at cosmological scales and a behavior close to General Relativity. The viability of the Hořava–Lifshitz model is evaluated in comparison to the standard <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Λ</mi>\\n <mtext>CDM</mtext>\\n </mrow>\\n <annotation>$ \\\\Lambda\\\\text{CDM}$</annotation>\\n </semantics></math> model using various Statistical Metrics.</p>\",\"PeriodicalId\":7896,\"journal\":{\"name\":\"Annalen der Physik\",\"volume\":\"537 5\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annalen der Physik\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400421\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202400421","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Determination of
H
0
$H_{0}$
and
r
d
$r_d$
in Horava–Lifshitz Gravity Using DESI-Y1 and SDSS-IV Dataset: Alleviating the Hubble Tension
Observational data are used from Baryon Acoustic Oscillations (DESI-Y1 and SDSS-IV), the sample, and Cosmic Chronometers measurements to constrain key cosmological parameters within the framework of Hořava-Lifshitz (HL) gravity. Specifically, the posterior distribution of Hubble constant (), the sound horizon (), and the running parameter is extracted, which governs the flow between the UV and Infra-Red (IR) regimes. By treating as a free parameter, this approach remains independent of early-Universe and recombination assumptions. These analysis yields , suggesting that the HL gravity model alleviates the Hubble tension, reducing the discrepancy from more than (between Planck and Riess) to approximately . Additionally, the model predicts , in alignment with values reported by the DESI-Y1, and , which is in close agreement with the value predicted by the Planck collaboration. The spatial curvature parameter is , consistent with predictions from the Wilkinson Microwave Anisotropy Probe (WMAP), suggesting a flat Universe. Additionally, the running parameter is constrained to lie near its IR limit (), indicating a restoration of Lorentz invariance at cosmological scales and a behavior close to General Relativity. The viability of the Hořava–Lifshitz model is evaluated in comparison to the standard model using various Statistical Metrics.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.