实验激波斜长石的微x射线衍射观测与标定:与拉曼光谱观测的比较

IF 3.9 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Fengke Cao, Roberta L. Flemming, Matthew R. M. Izawa, Steven J. Jaret, Jeffrey R. Johnson
{"title":"实验激波斜长石的微x射线衍射观测与标定:与拉曼光谱观测的比较","authors":"Fengke Cao,&nbsp;Roberta L. Flemming,&nbsp;Matthew R. M. Izawa,&nbsp;Steven J. Jaret,&nbsp;Jeffrey R. Johnson","doi":"10.1029/2024JE008574","DOIUrl":null,"url":null,"abstract":"<p>Plagioclase feldspar is a ubiquitous mineral found in planetary bodies such as Earth, Moon, Mars, large igneous asteroids such as Vesta, numerous achondrites, and every class of chondritic meteorite. Because all solid planetary bodies are potentially subject to hypervelocity impacts, understanding the shock response of plagioclase enables a better understanding of the geological histories of planetary bodies. This study investigates the response of andesine and bytownite to high-pressure shock waves using micro-XRD and Raman. Fourteen andesine and 11 bytownite samples, which had been previously shocked to peak pressures of 0–56 GPa, were examined. Micro-XRD revealed characteristic signatures of shock damage, including weakened diffraction intensities and heightened background signal, reflecting structural collapse under high pressures. Andesine-bearing rock showed the onset of amorphization at 28.4–29.6 GPa, progressing to complete amorphization at 47.5–50 GPa. Bytownite-bearing rock displayed a similar trend but with higher pressure thresholds: partial amorphization occurred at 25.5–27.0 GPa, and complete amorphization at 38.2–49 GPa. To quantify the degree of shock experienced by plagioclase minerals, we measured the Full Width at Half Maximum (FWHMχ) of Debye rings (from 2D XRD images) for samples across different shock levels. We established linear regression models between ΣFWHMχ and peak shock pressure for both andesine (0–28.4 GPa) and bytownite (0–25.5 GPa) using data from samples that remained crystalline. The model is particularly effective for low shock levels, while Raman is more effective at higher shock pressures. These quantitative relationships provide a valuable tool for assessing the shock history recorded in plagioclase minerals.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro X-Ray Diffraction Observations and Calibration of Experimentally Shocked Plagioclase Feldspars: Comparison With Raman Spectroscopic Observations\",\"authors\":\"Fengke Cao,&nbsp;Roberta L. Flemming,&nbsp;Matthew R. M. Izawa,&nbsp;Steven J. Jaret,&nbsp;Jeffrey R. Johnson\",\"doi\":\"10.1029/2024JE008574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plagioclase feldspar is a ubiquitous mineral found in planetary bodies such as Earth, Moon, Mars, large igneous asteroids such as Vesta, numerous achondrites, and every class of chondritic meteorite. Because all solid planetary bodies are potentially subject to hypervelocity impacts, understanding the shock response of plagioclase enables a better understanding of the geological histories of planetary bodies. This study investigates the response of andesine and bytownite to high-pressure shock waves using micro-XRD and Raman. Fourteen andesine and 11 bytownite samples, which had been previously shocked to peak pressures of 0–56 GPa, were examined. Micro-XRD revealed characteristic signatures of shock damage, including weakened diffraction intensities and heightened background signal, reflecting structural collapse under high pressures. Andesine-bearing rock showed the onset of amorphization at 28.4–29.6 GPa, progressing to complete amorphization at 47.5–50 GPa. Bytownite-bearing rock displayed a similar trend but with higher pressure thresholds: partial amorphization occurred at 25.5–27.0 GPa, and complete amorphization at 38.2–49 GPa. To quantify the degree of shock experienced by plagioclase minerals, we measured the Full Width at Half Maximum (FWHMχ) of Debye rings (from 2D XRD images) for samples across different shock levels. We established linear regression models between ΣFWHMχ and peak shock pressure for both andesine (0–28.4 GPa) and bytownite (0–25.5 GPa) using data from samples that remained crystalline. The model is particularly effective for low shock levels, while Raman is more effective at higher shock pressures. These quantitative relationships provide a valuable tool for assessing the shock history recorded in plagioclase minerals.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"130 5\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008574\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008574","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

斜长石长石是一种普遍存在的矿物,存在于行星体中,如地球、月球、火星、大型火成岩小行星,如灶神星、无数的无球粒陨石和每一类球粒陨石。因为所有的固体行星体都可能受到超高速撞击,了解斜长石的冲击反应可以更好地了解行星体的地质历史。采用显微x射线衍射和拉曼光谱研究了安山石和拜石对高压激波的响应。对14个安地石和11个拜镇石样品进行了检测,这些样品之前被震至0-56 GPa的峰值压力。微观x射线衍射分析显示了结构在高压下的破坏特征,包括衍射强度减弱和背景信号增强。含安山岩在28.4 ~ 29.6 GPa时开始非晶化,在47.5 ~ 50 GPa时完成非晶化。含白云石的岩石表现出类似的趋势,但压力阈值更高,在25.5 ~ 27.0 GPa发生部分非晶化,在38.2 ~ 49 GPa发生完全非晶化。为了量化斜长石矿物所经历的冲击程度,我们测量了不同冲击水平样品的德拜环的半最大值全宽度(FWHMχ)(来自2D XRD图像)。我们利用来自结晶样品的数据,建立了ΣFWHMχ与安山石(0-28.4 GPa)和bytownite (0-25.5 GPa)峰值冲击压力之间的线性回归模型。该模型对低冲击水平特别有效,而拉曼模型在高冲击压力下更有效。这些定量关系为评估斜长石矿物中记录的冲击历史提供了有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Micro X-Ray Diffraction Observations and Calibration of Experimentally Shocked Plagioclase Feldspars: Comparison With Raman Spectroscopic Observations

Plagioclase feldspar is a ubiquitous mineral found in planetary bodies such as Earth, Moon, Mars, large igneous asteroids such as Vesta, numerous achondrites, and every class of chondritic meteorite. Because all solid planetary bodies are potentially subject to hypervelocity impacts, understanding the shock response of plagioclase enables a better understanding of the geological histories of planetary bodies. This study investigates the response of andesine and bytownite to high-pressure shock waves using micro-XRD and Raman. Fourteen andesine and 11 bytownite samples, which had been previously shocked to peak pressures of 0–56 GPa, were examined. Micro-XRD revealed characteristic signatures of shock damage, including weakened diffraction intensities and heightened background signal, reflecting structural collapse under high pressures. Andesine-bearing rock showed the onset of amorphization at 28.4–29.6 GPa, progressing to complete amorphization at 47.5–50 GPa. Bytownite-bearing rock displayed a similar trend but with higher pressure thresholds: partial amorphization occurred at 25.5–27.0 GPa, and complete amorphization at 38.2–49 GPa. To quantify the degree of shock experienced by plagioclase minerals, we measured the Full Width at Half Maximum (FWHMχ) of Debye rings (from 2D XRD images) for samples across different shock levels. We established linear regression models between ΣFWHMχ and peak shock pressure for both andesine (0–28.4 GPa) and bytownite (0–25.5 GPa) using data from samples that remained crystalline. The model is particularly effective for low shock levels, while Raman is more effective at higher shock pressures. These quantitative relationships provide a valuable tool for assessing the shock history recorded in plagioclase minerals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信