正交多项式下三对角算子的谱

IF 0.6 Q3 MATHEMATICS
Rupert Lasser, Josef Obermaier
{"title":"正交多项式下三对角算子的谱","authors":"Rupert Lasser,&nbsp;Josef Obermaier","doi":"10.1007/s44146-023-00106-6","DOIUrl":null,"url":null,"abstract":"<div><p>The basis for our studies is a large class of orthogonal polynomial sequences <span>\\((P_n)_{n\\in {{\\mathbb {N}}}_0}\\)</span>, which is normalized by <span>\\(P_n(x_0)=1\\)</span> for all <span>\\(n\\in {\\mathbb {N}}_0\\)</span> where the coefficients in the three-term recurrence relation are bounded. The goal is to check if <span>\\(x_0 \\in {\\mathbb {R}}\\)</span> is in the support of the orthogonalization measure <span>\\(\\mu \\)</span>. For this purpose, we use, among other things, a result of G. H. Hardy concerning Cesàro operators on weighted <span>\\(l^2\\)</span>-spaces. These investigations generalize ideas from Lasser et al. (Arch Math 100:289–299, 2013).</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"91 1-2","pages":"95 - 108"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-023-00106-6.pdf","citationCount":"0","resultStr":"{\"title\":\"On the spectrum of tridiagonal operators in the context of orthogonal polynomials\",\"authors\":\"Rupert Lasser,&nbsp;Josef Obermaier\",\"doi\":\"10.1007/s44146-023-00106-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The basis for our studies is a large class of orthogonal polynomial sequences <span>\\\\((P_n)_{n\\\\in {{\\\\mathbb {N}}}_0}\\\\)</span>, which is normalized by <span>\\\\(P_n(x_0)=1\\\\)</span> for all <span>\\\\(n\\\\in {\\\\mathbb {N}}_0\\\\)</span> where the coefficients in the three-term recurrence relation are bounded. The goal is to check if <span>\\\\(x_0 \\\\in {\\\\mathbb {R}}\\\\)</span> is in the support of the orthogonalization measure <span>\\\\(\\\\mu \\\\)</span>. For this purpose, we use, among other things, a result of G. H. Hardy concerning Cesàro operators on weighted <span>\\\\(l^2\\\\)</span>-spaces. These investigations generalize ideas from Lasser et al. (Arch Math 100:289–299, 2013).</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"91 1-2\",\"pages\":\"95 - 108\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44146-023-00106-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-023-00106-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-023-00106-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的基础是一个大的正交多项式序列\((P_n)_{n\in {{\mathbb {N}}}_0}\),它被归一化为\(P_n(x_0)=1\),对于所有\(n\in {\mathbb {N}}_0\),其中三项递归关系中的系数是有界的。目的是检查\(x_0 \in {\mathbb {R}}\)是否支持正交度量\(\mu \)。为此,我们使用了g.h. Hardy关于\(l^2\) -空间上Cesàro算子的一个结果。这些调查概括了Lasser等人的观点(Arch Math 100:289-299, 2013)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the spectrum of tridiagonal operators in the context of orthogonal polynomials

The basis for our studies is a large class of orthogonal polynomial sequences \((P_n)_{n\in {{\mathbb {N}}}_0}\), which is normalized by \(P_n(x_0)=1\) for all \(n\in {\mathbb {N}}_0\) where the coefficients in the three-term recurrence relation are bounded. The goal is to check if \(x_0 \in {\mathbb {R}}\) is in the support of the orthogonalization measure \(\mu \). For this purpose, we use, among other things, a result of G. H. Hardy concerning Cesàro operators on weighted \(l^2\)-spaces. These investigations generalize ideas from Lasser et al. (Arch Math 100:289–299, 2013).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信