\(C^*\) -代数正锥上映射的Jordan \(*\) -同构的非线性表征

IF 0.6 Q3 MATHEMATICS
Osamu Hatori, Shiho Oi
{"title":"\\(C^*\\) -代数正锥上映射的Jordan \\(*\\) -同构的非线性表征","authors":"Osamu Hatori,&nbsp;Shiho Oi","doi":"10.1007/s44146-024-00140-y","DOIUrl":null,"url":null,"abstract":"<div><p>We study maps between positive definite or positive semidefinite cones of unital <span>\\(C^*\\)</span>-algebras. We describe surjective maps that preserve </p><ol>\n <li>\n <span>(1)</span>\n \n <p>the norm of the quotient or product of elements;</p>\n \n </li>\n <li>\n <span>(2)</span>\n \n <p>the spectrum of the quotient or product of elements;</p>\n \n </li>\n <li>\n <span>(3)</span>\n \n <p>the spectral seminorm of the quotient or product of elements.</p>\n \n </li>\n </ol><p> These maps relate to the Jordan <span>\\(*\\)</span>-isomorphisms between the specified <span>\\(C^*\\)</span>-algebras. While a surjection between positive definite cones that preserves the norm of the quotient of elements may not be extended to a linear map between the underlying <span>\\(C^*\\)</span>-algebras, the other types of surjections can be extended to a Jordan <span>\\(*\\)</span>-isomorphism or a Jordan <span>\\(*\\)</span>-isomorphism followed by 2-sided multiplication by a positive invertible element. We also study conditions for the centrality of positive invertible elements. We generalize “the corollary” regarding surjections between positive semidefinite cones of unital <span>\\(C^*\\)</span>-algebras. Applying it, we provide positive solutions to the problem posed by Molnár for general unital <span>\\(C^*\\)</span>-algebras.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"91 1-2","pages":"313 - 336"},"PeriodicalIF":0.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-linear characterization of Jordan \\\\(*\\\\)-isomorphisms via maps on positive cones of \\\\(C^*\\\\)-algebras\",\"authors\":\"Osamu Hatori,&nbsp;Shiho Oi\",\"doi\":\"10.1007/s44146-024-00140-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study maps between positive definite or positive semidefinite cones of unital <span>\\\\(C^*\\\\)</span>-algebras. We describe surjective maps that preserve </p><ol>\\n <li>\\n <span>(1)</span>\\n \\n <p>the norm of the quotient or product of elements;</p>\\n \\n </li>\\n <li>\\n <span>(2)</span>\\n \\n <p>the spectrum of the quotient or product of elements;</p>\\n \\n </li>\\n <li>\\n <span>(3)</span>\\n \\n <p>the spectral seminorm of the quotient or product of elements.</p>\\n \\n </li>\\n </ol><p> These maps relate to the Jordan <span>\\\\(*\\\\)</span>-isomorphisms between the specified <span>\\\\(C^*\\\\)</span>-algebras. While a surjection between positive definite cones that preserves the norm of the quotient of elements may not be extended to a linear map between the underlying <span>\\\\(C^*\\\\)</span>-algebras, the other types of surjections can be extended to a Jordan <span>\\\\(*\\\\)</span>-isomorphism or a Jordan <span>\\\\(*\\\\)</span>-isomorphism followed by 2-sided multiplication by a positive invertible element. We also study conditions for the centrality of positive invertible elements. We generalize “the corollary” regarding surjections between positive semidefinite cones of unital <span>\\\\(C^*\\\\)</span>-algebras. Applying it, we provide positive solutions to the problem posed by Molnár for general unital <span>\\\\(C^*\\\\)</span>-algebras.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"91 1-2\",\"pages\":\"313 - 336\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-024-00140-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00140-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了一元\(C^*\) -代数的正定锥与正半定锥之间的映射。我们描述了保持(1)元素的商或积的范数的满射映射;(二)元素的商或积的谱;(3)元素的商或积的谱半模。这些映射与指定的\(C^*\) -代数之间的约旦\(*\) -同构有关。当正定锥之间保留元素商的范数的射不能被扩展到底层的\(C^*\) -代数之间的线性映射时,其他类型的射可以被扩展到Jordan \(*\) -同构或Jordan \(*\) -同构后与一个正可逆元素的2边乘法。我们还研究了正可逆元中心性的条件。我们推广了关于酉\(C^*\) -代数的正半定锥之间的射的“推论”。应用它,我们给出了一般一元\(C^*\) -代数问题Molnár的正解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-linear characterization of Jordan \(*\)-isomorphisms via maps on positive cones of \(C^*\)-algebras

We study maps between positive definite or positive semidefinite cones of unital \(C^*\)-algebras. We describe surjective maps that preserve

  1. (1)

    the norm of the quotient or product of elements;

  2. (2)

    the spectrum of the quotient or product of elements;

  3. (3)

    the spectral seminorm of the quotient or product of elements.

These maps relate to the Jordan \(*\)-isomorphisms between the specified \(C^*\)-algebras. While a surjection between positive definite cones that preserves the norm of the quotient of elements may not be extended to a linear map between the underlying \(C^*\)-algebras, the other types of surjections can be extended to a Jordan \(*\)-isomorphism or a Jordan \(*\)-isomorphism followed by 2-sided multiplication by a positive invertible element. We also study conditions for the centrality of positive invertible elements. We generalize “the corollary” regarding surjections between positive semidefinite cones of unital \(C^*\)-algebras. Applying it, we provide positive solutions to the problem posed by Molnár for general unital \(C^*\)-algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信