希尔伯特空间上算子对半空间的限制

IF 0.5 Q3 MATHEMATICS
Sami Hamid, Carl Pearcy
{"title":"希尔伯特空间上算子对半空间的限制","authors":"Sami Hamid,&nbsp;Carl Pearcy","doi":"10.1007/s44146-024-00161-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is a sequel to Jung (Bull Aust Math Soc 97: 133–140, 2018) that was originally written concurrently with Jung (Bull Aust Math Soc 97: 133–140, 2018). In that paper we transferred the discussions in Androulakis (Int Eq Op Th 65: 473–484, 2009) and Popov (J Funct Anal 265: 257–265, 2013) concerning almost invariant half-spaces for operators on complex Banach spaces to the context of operators on Hilbert space, and we gave slightly simpler proofs of the main results in Androulakis (Int Eq Op Th 65: 473–484, 2009) and Popov (J Funct Anal 265: 257–265, 2013) in that context. In the present paper we discuss a consequence of the main construction in Jung (Bull Aust Math Soc 97: 133–140, 2018) for the restriction to a half-space of a certain large class of operators on Hilbert space.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"91 1-2","pages":"219 - 225"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On restrictions of operators on Hilbert space to a half-space\",\"authors\":\"Sami Hamid,&nbsp;Carl Pearcy\",\"doi\":\"10.1007/s44146-024-00161-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is a sequel to Jung (Bull Aust Math Soc 97: 133–140, 2018) that was originally written concurrently with Jung (Bull Aust Math Soc 97: 133–140, 2018). In that paper we transferred the discussions in Androulakis (Int Eq Op Th 65: 473–484, 2009) and Popov (J Funct Anal 265: 257–265, 2013) concerning almost invariant half-spaces for operators on complex Banach spaces to the context of operators on Hilbert space, and we gave slightly simpler proofs of the main results in Androulakis (Int Eq Op Th 65: 473–484, 2009) and Popov (J Funct Anal 265: 257–265, 2013) in that context. In the present paper we discuss a consequence of the main construction in Jung (Bull Aust Math Soc 97: 133–140, 2018) for the restriction to a half-space of a certain large class of operators on Hilbert space.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"91 1-2\",\"pages\":\"219 - 225\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-024-00161-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00161-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文是Jung (Bull Aust Math Soc 97: 133-140, 2018)的续集,最初与Jung (Bull Aust Math Soc 97: 133-140, 2018)同时撰写。在这篇论文中,我们将Androulakis (Int Eq Op Th 65: 473-484, 2009)和Popov (J Funct Anal 265: 257-265, 2013)关于复Banach空间上算子的几乎不变半空间的讨论转移到Hilbert空间上的算子的背景下,并且我们给出了Androulakis (Int Eq Op Th 65: 473-484, 2009)和Popov (J Funct Anal 265: 257-265, 2013)在该背景下的主要结果的稍微简单的证明。在本文中,我们讨论了Jung (Bull Aust Math Soc 97: 133-140, 2018)的主要构造对Hilbert空间上某一大类算子的半空间的限制的一个结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On restrictions of operators on Hilbert space to a half-space

This paper is a sequel to Jung (Bull Aust Math Soc 97: 133–140, 2018) that was originally written concurrently with Jung (Bull Aust Math Soc 97: 133–140, 2018). In that paper we transferred the discussions in Androulakis (Int Eq Op Th 65: 473–484, 2009) and Popov (J Funct Anal 265: 257–265, 2013) concerning almost invariant half-spaces for operators on complex Banach spaces to the context of operators on Hilbert space, and we gave slightly simpler proofs of the main results in Androulakis (Int Eq Op Th 65: 473–484, 2009) and Popov (J Funct Anal 265: 257–265, 2013) in that context. In the present paper we discuss a consequence of the main construction in Jung (Bull Aust Math Soc 97: 133–140, 2018) for the restriction to a half-space of a certain large class of operators on Hilbert space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信