{"title":"希尔伯特空间上算子对半空间的限制","authors":"Sami Hamid, Carl Pearcy","doi":"10.1007/s44146-024-00161-7","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is a sequel to Jung (Bull Aust Math Soc 97: 133–140, 2018) that was originally written concurrently with Jung (Bull Aust Math Soc 97: 133–140, 2018). In that paper we transferred the discussions in Androulakis (Int Eq Op Th 65: 473–484, 2009) and Popov (J Funct Anal 265: 257–265, 2013) concerning almost invariant half-spaces for operators on complex Banach spaces to the context of operators on Hilbert space, and we gave slightly simpler proofs of the main results in Androulakis (Int Eq Op Th 65: 473–484, 2009) and Popov (J Funct Anal 265: 257–265, 2013) in that context. In the present paper we discuss a consequence of the main construction in Jung (Bull Aust Math Soc 97: 133–140, 2018) for the restriction to a half-space of a certain large class of operators on Hilbert space.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"91 1-2","pages":"219 - 225"},"PeriodicalIF":0.5000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On restrictions of operators on Hilbert space to a half-space\",\"authors\":\"Sami Hamid, Carl Pearcy\",\"doi\":\"10.1007/s44146-024-00161-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is a sequel to Jung (Bull Aust Math Soc 97: 133–140, 2018) that was originally written concurrently with Jung (Bull Aust Math Soc 97: 133–140, 2018). In that paper we transferred the discussions in Androulakis (Int Eq Op Th 65: 473–484, 2009) and Popov (J Funct Anal 265: 257–265, 2013) concerning almost invariant half-spaces for operators on complex Banach spaces to the context of operators on Hilbert space, and we gave slightly simpler proofs of the main results in Androulakis (Int Eq Op Th 65: 473–484, 2009) and Popov (J Funct Anal 265: 257–265, 2013) in that context. In the present paper we discuss a consequence of the main construction in Jung (Bull Aust Math Soc 97: 133–140, 2018) for the restriction to a half-space of a certain large class of operators on Hilbert space.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"91 1-2\",\"pages\":\"219 - 225\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-024-00161-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00161-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文是Jung (Bull Aust Math Soc 97: 133-140, 2018)的续集,最初与Jung (Bull Aust Math Soc 97: 133-140, 2018)同时撰写。在这篇论文中,我们将Androulakis (Int Eq Op Th 65: 473-484, 2009)和Popov (J Funct Anal 265: 257-265, 2013)关于复Banach空间上算子的几乎不变半空间的讨论转移到Hilbert空间上的算子的背景下,并且我们给出了Androulakis (Int Eq Op Th 65: 473-484, 2009)和Popov (J Funct Anal 265: 257-265, 2013)在该背景下的主要结果的稍微简单的证明。在本文中,我们讨论了Jung (Bull Aust Math Soc 97: 133-140, 2018)的主要构造对Hilbert空间上某一大类算子的半空间的限制的一个结果。
On restrictions of operators on Hilbert space to a half-space
This paper is a sequel to Jung (Bull Aust Math Soc 97: 133–140, 2018) that was originally written concurrently with Jung (Bull Aust Math Soc 97: 133–140, 2018). In that paper we transferred the discussions in Androulakis (Int Eq Op Th 65: 473–484, 2009) and Popov (J Funct Anal 265: 257–265, 2013) concerning almost invariant half-spaces for operators on complex Banach spaces to the context of operators on Hilbert space, and we gave slightly simpler proofs of the main results in Androulakis (Int Eq Op Th 65: 473–484, 2009) and Popov (J Funct Anal 265: 257–265, 2013) in that context. In the present paper we discuss a consequence of the main construction in Jung (Bull Aust Math Soc 97: 133–140, 2018) for the restriction to a half-space of a certain large class of operators on Hilbert space.