基于1964-2024年甲烷带观测的2010年土星春分的独特性

IF 0.5 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS
A. P. Vidmachenko
{"title":"基于1964-2024年甲烷带观测的2010年土星春分的独特性","authors":"A. P. Vidmachenko","doi":"10.3103/S0884591325030055","DOIUrl":null,"url":null,"abstract":"<p>Due to the inclination of Saturn’s equator to the plane of its orbit at an angle of close to 27° and due to the presence of rings that block the arrival of solar radiation to the winter hemisphere for a long time, the planet’s atmosphere undergoes significant seasonal changes. Once every 14.7 Earth years, the planet’s rings are visible edge-on to an Earth-based observer, and then the insolation conditions for both hemispheres become the same. The most favorable opportunities for such observations were in 1966, 1980, 1995, 2009–2010, and 2024. The available observational data and the results of the authors’ calculations within the framework of a two-layer model of Saturn’s atmosphere for such equinoxes were compared. They showed that the latitudinal belts of the planet, which have just emerged from the shadow of the rings, usually differ significantly from other belts in their physical characteristics under practically the same physical and orbital conditions of the planet. From the analysis of the parameter values calculated for different latitudes, the conclusion was confirmed that, for the hemisphere that until the time of receiving observational data was shielded by rings (until 1966, 1995, and 2024 in the Southern Hemisphere and until 1980 and 2009 in the Northern Hemisphere), the cloud layer is more sparse and its upper boundary is at a higher altitude than in the hemisphere that “survived” the “summer” season before. Those equatorial regions of Saturn that were closed by rings for a long time, experiencing a deficit of solar radiation inflow into the atmosphere, differ from other latitude zones in an increased amount of some strongly absorbing color impurity. However, 2009 and, partly, 1995 do not correspond to this assumption. The northern equatorial region, which had just emerged from the shadow of the rings in 2009, did not show a significant decrease in methane absorption. That is, neither high-altitude haze nor a rarefied layer of clouds formed in this part of the atmosphere. Since, as a rule, these new formations are of a photochemical nature, it can be assumed that there was not enough energy for some reason in the atmosphere to form a photochemical aerosol layer, which usually formed in the lower stratosphere (upper troposphere) of Saturn, and which reduced methane absorption and increased albedo. The reason for this could be that the equinoxes on Saturn in 1995–1996 and in 2009–2010 occurred at times close to the minimum of activity on the Sun, when the solar activity index <i>R</i> differed only slightly from the zero value.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"41 3","pages":"108 - 114"},"PeriodicalIF":0.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Uniqueness of Saturn’s Equinox in 2010 Based on Observations in Methane Bands in 1964–2024\",\"authors\":\"A. P. Vidmachenko\",\"doi\":\"10.3103/S0884591325030055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to the inclination of Saturn’s equator to the plane of its orbit at an angle of close to 27° and due to the presence of rings that block the arrival of solar radiation to the winter hemisphere for a long time, the planet’s atmosphere undergoes significant seasonal changes. Once every 14.7 Earth years, the planet’s rings are visible edge-on to an Earth-based observer, and then the insolation conditions for both hemispheres become the same. The most favorable opportunities for such observations were in 1966, 1980, 1995, 2009–2010, and 2024. The available observational data and the results of the authors’ calculations within the framework of a two-layer model of Saturn’s atmosphere for such equinoxes were compared. They showed that the latitudinal belts of the planet, which have just emerged from the shadow of the rings, usually differ significantly from other belts in their physical characteristics under practically the same physical and orbital conditions of the planet. From the analysis of the parameter values calculated for different latitudes, the conclusion was confirmed that, for the hemisphere that until the time of receiving observational data was shielded by rings (until 1966, 1995, and 2024 in the Southern Hemisphere and until 1980 and 2009 in the Northern Hemisphere), the cloud layer is more sparse and its upper boundary is at a higher altitude than in the hemisphere that “survived” the “summer” season before. Those equatorial regions of Saturn that were closed by rings for a long time, experiencing a deficit of solar radiation inflow into the atmosphere, differ from other latitude zones in an increased amount of some strongly absorbing color impurity. However, 2009 and, partly, 1995 do not correspond to this assumption. The northern equatorial region, which had just emerged from the shadow of the rings in 2009, did not show a significant decrease in methane absorption. That is, neither high-altitude haze nor a rarefied layer of clouds formed in this part of the atmosphere. Since, as a rule, these new formations are of a photochemical nature, it can be assumed that there was not enough energy for some reason in the atmosphere to form a photochemical aerosol layer, which usually formed in the lower stratosphere (upper troposphere) of Saturn, and which reduced methane absorption and increased albedo. The reason for this could be that the equinoxes on Saturn in 1995–1996 and in 2009–2010 occurred at times close to the minimum of activity on the Sun, when the solar activity index <i>R</i> differed only slightly from the zero value.</p>\",\"PeriodicalId\":681,\"journal\":{\"name\":\"Kinematics and Physics of Celestial Bodies\",\"volume\":\"41 3\",\"pages\":\"108 - 114\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinematics and Physics of Celestial Bodies\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0884591325030055\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinematics and Physics of Celestial Bodies","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0884591325030055","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

由于土星赤道与其轨道平面的倾斜角接近27°,并且由于土星环的存在长时间阻挡了太阳辐射到达冬季半球,这颗行星的大气层经历了显著的季节性变化。每隔14.7个地球年,地球上的观测者就能看到这颗行星的光环,然后两个半球的日照条件就会变得一样。最有利的观测机会是1966年、1980年、1995年、2009-2010年和2024年。他们将现有的观测数据与作者在土星大气层双层模型框架内的计算结果进行了比较。他们表明,在几乎相同的物理和轨道条件下,刚刚从环的阴影中出现的行星纬向带通常在物理特征上与其他带有很大不同。通过对不同纬度的参数值进行分析,证实了在接收观测数据之前被光环遮挡的半球(南半球到1966年、1995年和2024年,北半球到1980年和2009年),云层比之前“熬过”“夏季”的半球更稀疏,云层上界高度更高。土星赤道上那些被光环长期封闭的地区,经历了太阳辐射流入大气的赤字,与其他纬度地区的不同之处在于,一些强吸收色杂质的数量增加了。然而,2009年和1995年的部分情况并不符合这一假设。赤道北部地区在2009年刚刚从光环的阴影中显现出来,并没有显示出甲烷吸收的显著减少。也就是说,在这部分大气中既没有形成高空雾霾,也没有形成稀薄的云层。由于这些新形成的地层通常是光化学性质的,因此可以假设,由于某种原因,大气中没有足够的能量来形成光化学气溶胶层,这种气溶胶层通常形成于土星的平流层下层(对流层上层),减少了甲烷的吸收,增加了反照率。其原因可能是1995-1996年和2009-2010年土星的分点发生在太阳活动的最小值附近,此时太阳活动指数R仅与零值略有不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Uniqueness of Saturn’s Equinox in 2010 Based on Observations in Methane Bands in 1964–2024

Due to the inclination of Saturn’s equator to the plane of its orbit at an angle of close to 27° and due to the presence of rings that block the arrival of solar radiation to the winter hemisphere for a long time, the planet’s atmosphere undergoes significant seasonal changes. Once every 14.7 Earth years, the planet’s rings are visible edge-on to an Earth-based observer, and then the insolation conditions for both hemispheres become the same. The most favorable opportunities for such observations were in 1966, 1980, 1995, 2009–2010, and 2024. The available observational data and the results of the authors’ calculations within the framework of a two-layer model of Saturn’s atmosphere for such equinoxes were compared. They showed that the latitudinal belts of the planet, which have just emerged from the shadow of the rings, usually differ significantly from other belts in their physical characteristics under practically the same physical and orbital conditions of the planet. From the analysis of the parameter values calculated for different latitudes, the conclusion was confirmed that, for the hemisphere that until the time of receiving observational data was shielded by rings (until 1966, 1995, and 2024 in the Southern Hemisphere and until 1980 and 2009 in the Northern Hemisphere), the cloud layer is more sparse and its upper boundary is at a higher altitude than in the hemisphere that “survived” the “summer” season before. Those equatorial regions of Saturn that were closed by rings for a long time, experiencing a deficit of solar radiation inflow into the atmosphere, differ from other latitude zones in an increased amount of some strongly absorbing color impurity. However, 2009 and, partly, 1995 do not correspond to this assumption. The northern equatorial region, which had just emerged from the shadow of the rings in 2009, did not show a significant decrease in methane absorption. That is, neither high-altitude haze nor a rarefied layer of clouds formed in this part of the atmosphere. Since, as a rule, these new formations are of a photochemical nature, it can be assumed that there was not enough energy for some reason in the atmosphere to form a photochemical aerosol layer, which usually formed in the lower stratosphere (upper troposphere) of Saturn, and which reduced methane absorption and increased albedo. The reason for this could be that the equinoxes on Saturn in 1995–1996 and in 2009–2010 occurred at times close to the minimum of activity on the Sun, when the solar activity index R differed only slightly from the zero value.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kinematics and Physics of Celestial Bodies
Kinematics and Physics of Celestial Bodies ASTRONOMY & ASTROPHYSICS-
CiteScore
0.90
自引率
40.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Kinematics and Physics of Celestial Bodies is an international peer reviewed journal that publishes original regular and review papers on positional and theoretical astronomy, Earth’s rotation and geodynamics, dynamics and physics of bodies of the Solar System, solar physics, physics of stars and interstellar medium, structure and dynamics of the Galaxy, extragalactic astronomy, atmospheric optics and astronomical climate, instruments and devices, and mathematical processing of astronomical information. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信