平面st图的向上点集嵌入

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Carlos Alegrí­a, Susanna Caroppo, Giordano Da Lozzo, Marco D’Elia, Giuseppe Di Battista, Fabrizio Frati, Fabrizio Grosso, Maurizio Patrignani
{"title":"平面st图的向上点集嵌入","authors":"Carlos Alegrí­a,&nbsp;Susanna Caroppo,&nbsp;Giordano Da Lozzo,&nbsp;Marco D’Elia,&nbsp;Giuseppe Di Battista,&nbsp;Fabrizio Frati,&nbsp;Fabrizio Grosso,&nbsp;Maurizio Patrignani","doi":"10.1007/s00453-025-01302-2","DOIUrl":null,"url":null,"abstract":"<div><p>We study upward pointset embeddings (<span>UPSE</span>s) of planar <i>st</i>-graphs. Let <i>G</i> be a planar <i>st</i>-graph and let <span>\\(S \\subset \\mathbb {R}^2\\)</span> be a pointset with <span>\\(|S|= |V(G)|\\)</span>. An <i>UPSE</i> of <i>G</i> on <i>S</i> is an upward planar straight-line drawing of <i>G</i> that maps the vertices of <i>G</i> to the points of <i>S</i>. We consider both the problem of testing the existence of an <span>UPSE</span> of <i>G</i> on <i>S</i> (<span>UPSE Testing</span>) and the problem of enumerating all <span>UPSE</span>s of <i>G</i> on <i>S</i>. We prove that <span>UPSE Testing</span> is <span>NP</span>-complete even for <i>st</i>-graphs that consist of a set of directed <i>st</i>-paths sharing only <i>s</i> and <i>t</i>. On the other hand, if <i>G</i> is an <i>n</i>-vertex planar <i>st</i>-graph whose maximum <i>st</i>-cutset has size <i>k</i>, then <span>UPSE Testing</span> can be solved in <span>\\(\\mathcal {O}(n^{4k})\\)</span> time with <span>\\(\\mathcal {O}(n^{3k})\\)</span> space; also, all the <span>UPSE</span>s of <i>G</i> on <i>S</i> can be enumerated with <span>\\(\\mathcal {O}(n)\\)</span> worst-case delay, using <span>\\(\\mathcal {O}(k n^{4k} \\log n)\\)</span> space, after <span>\\(\\mathcal {O}(k n^{4k} \\log n)\\)</span> set-up time. Moreover, for an <i>n</i>-vertex <i>st</i>-graph whose underlying graph is a cycle, we provide a necessary and sufficient condition for the existence of an <span>UPSE</span> on a given pointset, which can be tested in <span>\\(\\mathcal {O}(n \\log n)\\)</span> time. Related to this result, we give an algorithm that, for a set <i>S</i> of <i>n</i> points, enumerates all the non-crossing monotone Hamiltonian cycles on <i>S</i> with <span>\\(\\mathcal {O}(n)\\)</span> worst-case delay, using <span>\\(\\mathcal {O}(n^2)\\)</span> space, after <span>\\(\\mathcal {O}(n^2)\\)</span> set-up time.</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"87 6","pages":"930 - 960"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00453-025-01302-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Upward Pointset Embeddings of Planar st-Graphs\",\"authors\":\"Carlos Alegrí­a,&nbsp;Susanna Caroppo,&nbsp;Giordano Da Lozzo,&nbsp;Marco D’Elia,&nbsp;Giuseppe Di Battista,&nbsp;Fabrizio Frati,&nbsp;Fabrizio Grosso,&nbsp;Maurizio Patrignani\",\"doi\":\"10.1007/s00453-025-01302-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study upward pointset embeddings (<span>UPSE</span>s) of planar <i>st</i>-graphs. Let <i>G</i> be a planar <i>st</i>-graph and let <span>\\\\(S \\\\subset \\\\mathbb {R}^2\\\\)</span> be a pointset with <span>\\\\(|S|= |V(G)|\\\\)</span>. An <i>UPSE</i> of <i>G</i> on <i>S</i> is an upward planar straight-line drawing of <i>G</i> that maps the vertices of <i>G</i> to the points of <i>S</i>. We consider both the problem of testing the existence of an <span>UPSE</span> of <i>G</i> on <i>S</i> (<span>UPSE Testing</span>) and the problem of enumerating all <span>UPSE</span>s of <i>G</i> on <i>S</i>. We prove that <span>UPSE Testing</span> is <span>NP</span>-complete even for <i>st</i>-graphs that consist of a set of directed <i>st</i>-paths sharing only <i>s</i> and <i>t</i>. On the other hand, if <i>G</i> is an <i>n</i>-vertex planar <i>st</i>-graph whose maximum <i>st</i>-cutset has size <i>k</i>, then <span>UPSE Testing</span> can be solved in <span>\\\\(\\\\mathcal {O}(n^{4k})\\\\)</span> time with <span>\\\\(\\\\mathcal {O}(n^{3k})\\\\)</span> space; also, all the <span>UPSE</span>s of <i>G</i> on <i>S</i> can be enumerated with <span>\\\\(\\\\mathcal {O}(n)\\\\)</span> worst-case delay, using <span>\\\\(\\\\mathcal {O}(k n^{4k} \\\\log n)\\\\)</span> space, after <span>\\\\(\\\\mathcal {O}(k n^{4k} \\\\log n)\\\\)</span> set-up time. Moreover, for an <i>n</i>-vertex <i>st</i>-graph whose underlying graph is a cycle, we provide a necessary and sufficient condition for the existence of an <span>UPSE</span> on a given pointset, which can be tested in <span>\\\\(\\\\mathcal {O}(n \\\\log n)\\\\)</span> time. Related to this result, we give an algorithm that, for a set <i>S</i> of <i>n</i> points, enumerates all the non-crossing monotone Hamiltonian cycles on <i>S</i> with <span>\\\\(\\\\mathcal {O}(n)\\\\)</span> worst-case delay, using <span>\\\\(\\\\mathcal {O}(n^2)\\\\)</span> space, after <span>\\\\(\\\\mathcal {O}(n^2)\\\\)</span> set-up time.</p></div>\",\"PeriodicalId\":50824,\"journal\":{\"name\":\"Algorithmica\",\"volume\":\"87 6\",\"pages\":\"930 - 960\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00453-025-01302-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithmica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00453-025-01302-2\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-025-01302-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

研究了平面st图的向上点集嵌入。设G为平面st图,设\(S \subset \mathbb {R}^2\)为具有\(|S|= |V(G)|\)的点集。G在S上的UPSE是G在S上的一个向上平面直线图,它将G的顶点映射到S上的点。我们考虑了检验G在S上的UPSE是否存在的问题(UPSE检验)和枚举S上G的所有UPSE的问题。我们证明了UPSE检验是np完全的,即使对于由一组只共享S和t的有向st路径组成的st图。另一方面,如果G是一个n顶点的平面st图,其最大st切集的大小为k,则UPSE测试可以在\(\mathcal {O}(n^{4k})\)时间和\(\mathcal {O}(n^{3k})\)空间上求解;并且,在\(\mathcal {O}(k n^{4k} \log n)\)设置时间之后,可以使用\(\mathcal {O}(k n^{4k} \log n)\)空间,以\(\mathcal {O}(n)\)最坏延迟枚举G对S的所有ups。此外,对于底层图为循环的n顶点st图,我们给出了在给定点集上存在UPSE的充分必要条件,该条件可在\(\mathcal {O}(n \log n)\)时间内检验。与此结果相关,我们给出了一种算法,对于n个点的集合S,使用\(\mathcal {O}(n^2)\)空间,在\(\mathcal {O}(n^2)\)设置时间之后,枚举S上具有\(\mathcal {O}(n)\)最坏情况延迟的所有非交叉单调哈密顿环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upward Pointset Embeddings of Planar st-Graphs

We study upward pointset embeddings (UPSEs) of planar st-graphs. Let G be a planar st-graph and let \(S \subset \mathbb {R}^2\) be a pointset with \(|S|= |V(G)|\). An UPSE of G on S is an upward planar straight-line drawing of G that maps the vertices of G to the points of S. We consider both the problem of testing the existence of an UPSE of G on S (UPSE Testing) and the problem of enumerating all UPSEs of G on S. We prove that UPSE Testing is NP-complete even for st-graphs that consist of a set of directed st-paths sharing only s and t. On the other hand, if G is an n-vertex planar st-graph whose maximum st-cutset has size k, then UPSE Testing can be solved in \(\mathcal {O}(n^{4k})\) time with \(\mathcal {O}(n^{3k})\) space; also, all the UPSEs of G on S can be enumerated with \(\mathcal {O}(n)\) worst-case delay, using \(\mathcal {O}(k n^{4k} \log n)\) space, after \(\mathcal {O}(k n^{4k} \log n)\) set-up time. Moreover, for an n-vertex st-graph whose underlying graph is a cycle, we provide a necessary and sufficient condition for the existence of an UPSE on a given pointset, which can be tested in \(\mathcal {O}(n \log n)\) time. Related to this result, we give an algorithm that, for a set S of n points, enumerates all the non-crossing monotone Hamiltonian cycles on S with \(\mathcal {O}(n)\) worst-case delay, using \(\mathcal {O}(n^2)\) space, after \(\mathcal {O}(n^2)\) set-up time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Algorithmica
Algorithmica 工程技术-计算机:软件工程
CiteScore
2.80
自引率
9.10%
发文量
158
审稿时长
12 months
期刊介绍: Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential. Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming. In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信