用于宽带电磁波吸收的柔性分层中空SiC/SiOx微/纳米纤维海绵

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mingyuan Yan, Yuelei Pan, Pan He, Lunlun Gong, Yangyang Fu, Heping Zhang, Xudong Cheng
{"title":"用于宽带电磁波吸收的柔性分层中空SiC/SiOx微/纳米纤维海绵","authors":"Mingyuan Yan,&nbsp;Yuelei Pan,&nbsp;Pan He,&nbsp;Lunlun Gong,&nbsp;Yangyang Fu,&nbsp;Heping Zhang,&nbsp;Xudong Cheng","doi":"10.1007/s42765-025-00527-8","DOIUrl":null,"url":null,"abstract":"<div><p>Silicon carbide (SiC) porous materials possess exceptional electromagnetic wave absorption capabilities. In recent years, various SiC-based wave-absorbing materials have been developed. However, their inherent brittleness restricts their applications, posing an ongoing challenge in balancing wave absorption with mechanical performance. Herein, a templated chemical vapor deposition strategy was employed to fabricate hierarchical hollow SiC micro/nanofiber sponges (HHSMSs). The directional growth and orderly arrangement of SiC nanorods on the template fibers construct a micro–nano-structured SiC shell layer. By controlling the reaction time, the thickness of this shell layer can be tuned between 0.4 and 3.1 µm. Moreover, during the deposition process, an amorphous SiO<sub>x</sub> structure tends to form on the outer surface of the fibers. Owing to this amorphous SiO<sub>x</sub> structure, HHSMSs demonstrate excellent flexibility and elasticity, allowing them to be bent by 180° and compressed by 60%. In addition, the hierarchical hollow structure enhances impedance matching, resulting in superior electromagnetic wave absorption with a minimum reflection loss of −51.8 dB and an ultra-wide effective absorption bandwidth (EAB) of 8.6 GHz. These properties highlight the potential of these flexible, broadband-absorbing sponges for stealth and electromagnetic interference shielding in high-temperature environments.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 3","pages":"853 - 863"},"PeriodicalIF":17.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible Hierarchical Hollow SiC/SiOx Micro/nanofiber Sponges for Broadband Electromagnetic Wave Absorption\",\"authors\":\"Mingyuan Yan,&nbsp;Yuelei Pan,&nbsp;Pan He,&nbsp;Lunlun Gong,&nbsp;Yangyang Fu,&nbsp;Heping Zhang,&nbsp;Xudong Cheng\",\"doi\":\"10.1007/s42765-025-00527-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Silicon carbide (SiC) porous materials possess exceptional electromagnetic wave absorption capabilities. In recent years, various SiC-based wave-absorbing materials have been developed. However, their inherent brittleness restricts their applications, posing an ongoing challenge in balancing wave absorption with mechanical performance. Herein, a templated chemical vapor deposition strategy was employed to fabricate hierarchical hollow SiC micro/nanofiber sponges (HHSMSs). The directional growth and orderly arrangement of SiC nanorods on the template fibers construct a micro–nano-structured SiC shell layer. By controlling the reaction time, the thickness of this shell layer can be tuned between 0.4 and 3.1 µm. Moreover, during the deposition process, an amorphous SiO<sub>x</sub> structure tends to form on the outer surface of the fibers. Owing to this amorphous SiO<sub>x</sub> structure, HHSMSs demonstrate excellent flexibility and elasticity, allowing them to be bent by 180° and compressed by 60%. In addition, the hierarchical hollow structure enhances impedance matching, resulting in superior electromagnetic wave absorption with a minimum reflection loss of −51.8 dB and an ultra-wide effective absorption bandwidth (EAB) of 8.6 GHz. These properties highlight the potential of these flexible, broadband-absorbing sponges for stealth and electromagnetic interference shielding in high-temperature environments.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"7 3\",\"pages\":\"853 - 863\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-025-00527-8\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-025-00527-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

碳化硅(SiC)多孔材料具有优异的电磁波吸收能力。近年来,各种硅基吸波材料得到了发展。然而,它们固有的脆性限制了它们的应用,在平衡波吸收和机械性能方面提出了持续的挑战。本文采用模板化气相沉积方法制备了分层中空碳化硅微纳米纤维海绵(HHSMSs)。SiC纳米棒在模板纤维上的定向生长和有序排列构成了微纳米结构的SiC壳层。通过控制反应时间,该壳层的厚度可在0.4 ~ 3.1µm之间调节。此外,在沉积过程中,非晶SiOx结构倾向于在纤维的外表面形成。由于这种非晶SiOx结构,HHSMSs表现出优异的柔韧性和弹性,允许它们弯曲180°,压缩60%。此外,分层中空结构增强了阻抗匹配,使电磁波吸收性能优越,反射损耗最小为- 51.8 dB,有效吸收带宽(EAB)超宽,达到8.6 GHz。这些特性突出了这些灵活的、宽带吸收海绵在高温环境中隐身和屏蔽电磁干扰的潜力。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible Hierarchical Hollow SiC/SiOx Micro/nanofiber Sponges for Broadband Electromagnetic Wave Absorption

Silicon carbide (SiC) porous materials possess exceptional electromagnetic wave absorption capabilities. In recent years, various SiC-based wave-absorbing materials have been developed. However, their inherent brittleness restricts their applications, posing an ongoing challenge in balancing wave absorption with mechanical performance. Herein, a templated chemical vapor deposition strategy was employed to fabricate hierarchical hollow SiC micro/nanofiber sponges (HHSMSs). The directional growth and orderly arrangement of SiC nanorods on the template fibers construct a micro–nano-structured SiC shell layer. By controlling the reaction time, the thickness of this shell layer can be tuned between 0.4 and 3.1 µm. Moreover, during the deposition process, an amorphous SiOx structure tends to form on the outer surface of the fibers. Owing to this amorphous SiOx structure, HHSMSs demonstrate excellent flexibility and elasticity, allowing them to be bent by 180° and compressed by 60%. In addition, the hierarchical hollow structure enhances impedance matching, resulting in superior electromagnetic wave absorption with a minimum reflection loss of −51.8 dB and an ultra-wide effective absorption bandwidth (EAB) of 8.6 GHz. These properties highlight the potential of these flexible, broadband-absorbing sponges for stealth and electromagnetic interference shielding in high-temperature environments.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信