{"title":"关于不相交有限完全连续算子的对偶性","authors":"N. Hafidi, J. H’Michane, L. Zraoula","doi":"10.1007/s44146-025-00180-y","DOIUrl":null,"url":null,"abstract":"<div><p>We study the duality problem for the class of disjoint limited completely continuous operators.\n As consequence, we give a generalization of a result given in H’michane et al. (Operators Matrices 8:593599, 2014. https://doi.org/10.7153/oam-08-31) about the direct duality problem and we give the correct version of the result given in H’michane et al. (Operators Matrices 8:593599, 2014. https://doi.org/10.7153/oam-08-31) about the reciprocal duality problem for the class of limited completely continuous operators.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"91 1-2","pages":"213 - 218"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the duality of disjoint limited completely continuous operators\",\"authors\":\"N. Hafidi, J. H’Michane, L. Zraoula\",\"doi\":\"10.1007/s44146-025-00180-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the duality problem for the class of disjoint limited completely continuous operators.\\n As consequence, we give a generalization of a result given in H’michane et al. (Operators Matrices 8:593599, 2014. https://doi.org/10.7153/oam-08-31) about the direct duality problem and we give the correct version of the result given in H’michane et al. (Operators Matrices 8:593599, 2014. https://doi.org/10.7153/oam-08-31) about the reciprocal duality problem for the class of limited completely continuous operators.</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"91 1-2\",\"pages\":\"213 - 218\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-025-00180-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-025-00180-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
研究了一类不相交有限完全连续算子的对偶问题。因此,我们对H ' micee et al. (Operators Matrices 8:59 - 3599, 2014)中给出的结果进行了推广。https://doi.org/10.7153/oam-08-31)关于直接对偶问题,我们给出了H 'michane et al. (Operators Matrices 8:593599, 2014)中给出的结果的正确版本。https://doi.org/10.7153/oam-08-31)关于一类有限完全连续算子的对偶性问题。
On the duality of disjoint limited completely continuous operators
We study the duality problem for the class of disjoint limited completely continuous operators.
As consequence, we give a generalization of a result given in H’michane et al. (Operators Matrices 8:593599, 2014. https://doi.org/10.7153/oam-08-31) about the direct duality problem and we give the correct version of the result given in H’michane et al. (Operators Matrices 8:593599, 2014. https://doi.org/10.7153/oam-08-31) about the reciprocal duality problem for the class of limited completely continuous operators.