具有振幅各向异性的二维物体的深度学习鬼偏振测量

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY
D. A. Chernousov, D. P. Agapov
{"title":"具有振幅各向异性的二维物体的深度学习鬼偏振测量","authors":"D. A. Chernousov,&nbsp;D. P. Agapov","doi":"10.3103/S002713492570016X","DOIUrl":null,"url":null,"abstract":"<p>This paper discusses the potential of deep learning in solving the inverse problem of computational ghost polarimetry. For the first time, it is demonstrated that the spatial distribution of the polarization properties of objects with linear amplitude anisotropy can be restored using a neural network trained on model data. The spatial distribution of the parameters of linear amplitude anisotropy is determined with an accuracy of 7.8<span>\\(\\%\\)</span> and 15.6<span>\\(\\%\\)</span> for the azimuth and the value of anisotropy, respectively.</p>","PeriodicalId":711,"journal":{"name":"Moscow University Physics Bulletin","volume":"80 1","pages":"112 - 118"},"PeriodicalIF":0.4000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Ghost Polarimetry of Two-Dimensional Objects with Amplitude Anisotropy\",\"authors\":\"D. A. Chernousov,&nbsp;D. P. Agapov\",\"doi\":\"10.3103/S002713492570016X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper discusses the potential of deep learning in solving the inverse problem of computational ghost polarimetry. For the first time, it is demonstrated that the spatial distribution of the polarization properties of objects with linear amplitude anisotropy can be restored using a neural network trained on model data. The spatial distribution of the parameters of linear amplitude anisotropy is determined with an accuracy of 7.8<span>\\\\(\\\\%\\\\)</span> and 15.6<span>\\\\(\\\\%\\\\)</span> for the azimuth and the value of anisotropy, respectively.</p>\",\"PeriodicalId\":711,\"journal\":{\"name\":\"Moscow University Physics Bulletin\",\"volume\":\"80 1\",\"pages\":\"112 - 118\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow University Physics Bulletin\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S002713492570016X\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Physics Bulletin","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S002713492570016X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了深度学习在解决计算虚偏振反演问题中的潜力。首次证明了利用模型数据训练的神经网络可以恢复具有线性振幅各向异性的物体偏振特性的空间分布。确定了线性振幅各向异性参数的空间分布,方位角和各向异性值的精度分别为7.8 \(\%\)和15.6 \(\%\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Ghost Polarimetry of Two-Dimensional Objects with Amplitude Anisotropy

This paper discusses the potential of deep learning in solving the inverse problem of computational ghost polarimetry. For the first time, it is demonstrated that the spatial distribution of the polarization properties of objects with linear amplitude anisotropy can be restored using a neural network trained on model data. The spatial distribution of the parameters of linear amplitude anisotropy is determined with an accuracy of 7.8\(\%\) and 15.6\(\%\) for the azimuth and the value of anisotropy, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow University Physics Bulletin
Moscow University Physics Bulletin PHYSICS, MULTIDISCIPLINARY-
CiteScore
0.70
自引率
0.00%
发文量
129
审稿时长
6-12 weeks
期刊介绍: Moscow University Physics Bulletin publishes original papers (reviews, articles, and brief communications) in the following fields of experimental and theoretical physics: theoretical and mathematical physics; physics of nuclei and elementary particles; radiophysics, electronics, acoustics; optics and spectroscopy; laser physics; condensed matter physics; chemical physics, physical kinetics, and plasma physics; biophysics and medical physics; astronomy, astrophysics, and cosmology; physics of the Earth’s, atmosphere, and hydrosphere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信