{"title":"Damek-Ricci空间\\(L^{p}\\) -空间中Fourier-Helgason变换权可积性的充分条件","authors":"Salah El Ouadih","doi":"10.1007/s44146-025-00178-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we give sufficient conditions for functions defined on the <span>\\(L^{p}\\)</span>-space on Damek–Ricci spaces, <span>\\(1<p\\le 2\\)</span>, providing the weighted integrability of their Fourier–Helgason transforms. These results generalize a famous Titchmarsh’s theorem and Younis’ theorem, due to El Ouadih and Daher on Damek–Ricci spaces (El Ouadih and Daher in L C R Math Acad Sci Paris 359:675–685, 2021).\n</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"91 1-2","pages":"181 - 193"},"PeriodicalIF":0.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sufficient conditions for the weighted integrability of Fourier–Helgason transforms in the \\\\(L^{p}\\\\)-space on Damek–Ricci spaces\",\"authors\":\"Salah El Ouadih\",\"doi\":\"10.1007/s44146-025-00178-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we give sufficient conditions for functions defined on the <span>\\\\(L^{p}\\\\)</span>-space on Damek–Ricci spaces, <span>\\\\(1<p\\\\le 2\\\\)</span>, providing the weighted integrability of their Fourier–Helgason transforms. These results generalize a famous Titchmarsh’s theorem and Younis’ theorem, due to El Ouadih and Daher on Damek–Ricci spaces (El Ouadih and Daher in L C R Math Acad Sci Paris 359:675–685, 2021).\\n</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"91 1-2\",\"pages\":\"181 - 193\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-025-00178-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-025-00178-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文给出了在Damek-Ricci空间\(1<p\le 2\)上\(L^{p}\) -空间上定义的函数的充分条件,给出了它们的Fourier-Helgason变换的加权可积性。这些结果推广了著名的Titchmarsh定理和Younis定理,由于El Ouadih和Daher在Damek-Ricci空间上(El Ouadih和Daher in L C R Math Acad Sci Paris 359:675-685, 2021)。
Sufficient conditions for the weighted integrability of Fourier–Helgason transforms in the \(L^{p}\)-space on Damek–Ricci spaces
In this paper, we give sufficient conditions for functions defined on the \(L^{p}\)-space on Damek–Ricci spaces, \(1<p\le 2\), providing the weighted integrability of their Fourier–Helgason transforms. These results generalize a famous Titchmarsh’s theorem and Younis’ theorem, due to El Ouadih and Daher on Damek–Ricci spaces (El Ouadih and Daher in L C R Math Acad Sci Paris 359:675–685, 2021).