Damek-Ricci空间\(L^{p}\) -空间中Fourier-Helgason变换权可积性的充分条件

IF 0.5 Q3 MATHEMATICS
Salah El Ouadih
{"title":"Damek-Ricci空间\\(L^{p}\\) -空间中Fourier-Helgason变换权可积性的充分条件","authors":"Salah El Ouadih","doi":"10.1007/s44146-025-00178-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we give sufficient conditions for functions defined on the <span>\\(L^{p}\\)</span>-space on Damek–Ricci spaces, <span>\\(1&lt;p\\le 2\\)</span>, providing the weighted integrability of their Fourier–Helgason transforms. These results generalize a famous Titchmarsh’s theorem and Younis’ theorem, due to El Ouadih and Daher on Damek–Ricci spaces (El Ouadih and Daher in L C R Math Acad Sci Paris 359:675–685, 2021).\n</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"91 1-2","pages":"181 - 193"},"PeriodicalIF":0.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sufficient conditions for the weighted integrability of Fourier–Helgason transforms in the \\\\(L^{p}\\\\)-space on Damek–Ricci spaces\",\"authors\":\"Salah El Ouadih\",\"doi\":\"10.1007/s44146-025-00178-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we give sufficient conditions for functions defined on the <span>\\\\(L^{p}\\\\)</span>-space on Damek–Ricci spaces, <span>\\\\(1&lt;p\\\\le 2\\\\)</span>, providing the weighted integrability of their Fourier–Helgason transforms. These results generalize a famous Titchmarsh’s theorem and Younis’ theorem, due to El Ouadih and Daher on Damek–Ricci spaces (El Ouadih and Daher in L C R Math Acad Sci Paris 359:675–685, 2021).\\n</p></div>\",\"PeriodicalId\":46939,\"journal\":{\"name\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"volume\":\"91 1-2\",\"pages\":\"181 - 193\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACTA SCIENTIARUM MATHEMATICARUM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44146-025-00178-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-025-00178-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了在Damek-Ricci空间\(1<p\le 2\)上\(L^{p}\) -空间上定义的函数的充分条件,给出了它们的Fourier-Helgason变换的加权可积性。这些结果推广了著名的Titchmarsh定理和Younis定理,由于El Ouadih和Daher在Damek-Ricci空间上(El Ouadih和Daher in L C R Math Acad Sci Paris 359:675-685, 2021)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sufficient conditions for the weighted integrability of Fourier–Helgason transforms in the \(L^{p}\)-space on Damek–Ricci spaces

In this paper, we give sufficient conditions for functions defined on the \(L^{p}\)-space on Damek–Ricci spaces, \(1<p\le 2\), providing the weighted integrability of their Fourier–Helgason transforms. These results generalize a famous Titchmarsh’s theorem and Younis’ theorem, due to El Ouadih and Daher on Damek–Ricci spaces (El Ouadih and Daher in L C R Math Acad Sci Paris 359:675–685, 2021).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信