{"title":"宽带电磁波吸收柔性MXene/石墨烯纤维织物的设计","authors":"Jiani Du, Tian Li, Jiatong Li, Jingyuan Tang, Runhua Zhang, Yanan Liu, Jiamin Feng, Fanbin Meng","doi":"10.1007/s42765-025-00523-y","DOIUrl":null,"url":null,"abstract":"<div><p>Fabrics have attracted significant attention in the field of electromagnetic shielding due to their unique grid structure, high electrical conductivity, and flexibility. To enrich the research of textiles for microwave absorption, two-dimensional transition metal carbide (MXene)-enhanced reduced graphene oxide-based fabrics (MXene/RGO fabrics) were synthesized in this paper by using wet spinning–ionic cross-linking–chemical reduction strategy. MXene/RGO fabrics achieve a minimum reflection loss of − 58.3 dB at 17.6 GHz and a thickness of 2.4 mm, with an effective absorption bandwidth of 4.92 GHz. In addition, the combination of electromagnetic finite element simulation technology and test results was used to further elucidate the response mode and loss mechanism of MXene/RGO fabrics. The MXene/RGO composite fibers exhibit a tuned attenuation ability and impedance matching performance, which is attributed to the increased polarization relaxation loss caused by the large number of heterogeneous interfaces between RGO, MXene, and TiO<sub>2</sub> particles, as well as the appropriate electrical conductivity (16.6 S/cm). MXene/RGO fibers exhibit excellent microwave absorption performance, mechanical strength (534 MPa), easy modification, and fatigue resistance, promising stable absorption of electromagnetic waves in complex environments, thereby expanding the application scenarios of fabrics in the field of microwave absorption.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"7 3","pages":"811 - 826"},"PeriodicalIF":17.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Flexible MXene/Graphene-Based Fiber Fabrics for Broadband Electromagnetic Wave Absorption\",\"authors\":\"Jiani Du, Tian Li, Jiatong Li, Jingyuan Tang, Runhua Zhang, Yanan Liu, Jiamin Feng, Fanbin Meng\",\"doi\":\"10.1007/s42765-025-00523-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fabrics have attracted significant attention in the field of electromagnetic shielding due to their unique grid structure, high electrical conductivity, and flexibility. To enrich the research of textiles for microwave absorption, two-dimensional transition metal carbide (MXene)-enhanced reduced graphene oxide-based fabrics (MXene/RGO fabrics) were synthesized in this paper by using wet spinning–ionic cross-linking–chemical reduction strategy. MXene/RGO fabrics achieve a minimum reflection loss of − 58.3 dB at 17.6 GHz and a thickness of 2.4 mm, with an effective absorption bandwidth of 4.92 GHz. In addition, the combination of electromagnetic finite element simulation technology and test results was used to further elucidate the response mode and loss mechanism of MXene/RGO fabrics. The MXene/RGO composite fibers exhibit a tuned attenuation ability and impedance matching performance, which is attributed to the increased polarization relaxation loss caused by the large number of heterogeneous interfaces between RGO, MXene, and TiO<sub>2</sub> particles, as well as the appropriate electrical conductivity (16.6 S/cm). MXene/RGO fibers exhibit excellent microwave absorption performance, mechanical strength (534 MPa), easy modification, and fatigue resistance, promising stable absorption of electromagnetic waves in complex environments, thereby expanding the application scenarios of fabrics in the field of microwave absorption.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"7 3\",\"pages\":\"811 - 826\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-025-00523-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-025-00523-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Design of Flexible MXene/Graphene-Based Fiber Fabrics for Broadband Electromagnetic Wave Absorption
Fabrics have attracted significant attention in the field of electromagnetic shielding due to their unique grid structure, high electrical conductivity, and flexibility. To enrich the research of textiles for microwave absorption, two-dimensional transition metal carbide (MXene)-enhanced reduced graphene oxide-based fabrics (MXene/RGO fabrics) were synthesized in this paper by using wet spinning–ionic cross-linking–chemical reduction strategy. MXene/RGO fabrics achieve a minimum reflection loss of − 58.3 dB at 17.6 GHz and a thickness of 2.4 mm, with an effective absorption bandwidth of 4.92 GHz. In addition, the combination of electromagnetic finite element simulation technology and test results was used to further elucidate the response mode and loss mechanism of MXene/RGO fabrics. The MXene/RGO composite fibers exhibit a tuned attenuation ability and impedance matching performance, which is attributed to the increased polarization relaxation loss caused by the large number of heterogeneous interfaces between RGO, MXene, and TiO2 particles, as well as the appropriate electrical conductivity (16.6 S/cm). MXene/RGO fibers exhibit excellent microwave absorption performance, mechanical strength (534 MPa), easy modification, and fatigue resistance, promising stable absorption of electromagnetic waves in complex environments, thereby expanding the application scenarios of fabrics in the field of microwave absorption.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.