通过开裂识别带电结构的潜在稳定区域

IF 1.6 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
M. Z. Bhatti, Bander Almutairi, S. Rashid, M. A. Malik, Z. Amjad
{"title":"通过开裂识别带电结构的潜在稳定区域","authors":"M. Z. Bhatti,&nbsp;Bander Almutairi,&nbsp;S. Rashid,&nbsp;M. A. Malik,&nbsp;Z. Amjad","doi":"10.1007/s12648-024-03472-1","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this article is to determine potentially stable regions in charged compact stars by using the notion of cracking in general relativity. We use the perturbation scheme to analyze the force distribution function. If the radial forces exerted on compact objects change their direction then these perturbations may lead to cracking. This technique offers a different strategy to elucidate the stability of polytropic models. Hence, we check the stability of celestial objects by taking into account the polytropic equation of state. To achieve this, we compute the field equations using Einstein-Maxwell tensors. Moreover, we demonstrate the radial and tangential components of sound speeds. These sound speeds may prove to be cornerstones in indicating locally anisotropic stable regions. Subsequently, we consider various models and analyze their stability.</p></div>","PeriodicalId":584,"journal":{"name":"Indian Journal of Physics","volume":"99 6","pages":"2317 - 2329"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying potentially stable regions of charged structures via cracking\",\"authors\":\"M. Z. Bhatti,&nbsp;Bander Almutairi,&nbsp;S. Rashid,&nbsp;M. A. Malik,&nbsp;Z. Amjad\",\"doi\":\"10.1007/s12648-024-03472-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The objective of this article is to determine potentially stable regions in charged compact stars by using the notion of cracking in general relativity. We use the perturbation scheme to analyze the force distribution function. If the radial forces exerted on compact objects change their direction then these perturbations may lead to cracking. This technique offers a different strategy to elucidate the stability of polytropic models. Hence, we check the stability of celestial objects by taking into account the polytropic equation of state. To achieve this, we compute the field equations using Einstein-Maxwell tensors. Moreover, we demonstrate the radial and tangential components of sound speeds. These sound speeds may prove to be cornerstones in indicating locally anisotropic stable regions. Subsequently, we consider various models and analyze their stability.</p></div>\",\"PeriodicalId\":584,\"journal\":{\"name\":\"Indian Journal of Physics\",\"volume\":\"99 6\",\"pages\":\"2317 - 2329\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12648-024-03472-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12648-024-03472-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文的目的是利用广义相对论中的裂纹概念来确定带电致密恒星的潜在稳定区域。我们用摄动格式来分析力的分布函数。如果施加在致密物体上的径向力改变了它们的方向,那么这些扰动可能导致开裂。这种技术为阐明多向性模型的稳定性提供了一种不同的策略。因此,我们通过考虑多向状态方程来检验天体的稳定性。为了实现这一点,我们使用爱因斯坦-麦克斯韦张量计算场方程。此外,我们还演示了声速的径向和切向分量。这些声速可能被证明是指示局部各向异性稳定区域的基础。随后,我们考虑了各种模型并分析了它们的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying potentially stable regions of charged structures via cracking

The objective of this article is to determine potentially stable regions in charged compact stars by using the notion of cracking in general relativity. We use the perturbation scheme to analyze the force distribution function. If the radial forces exerted on compact objects change their direction then these perturbations may lead to cracking. This technique offers a different strategy to elucidate the stability of polytropic models. Hence, we check the stability of celestial objects by taking into account the polytropic equation of state. To achieve this, we compute the field equations using Einstein-Maxwell tensors. Moreover, we demonstrate the radial and tangential components of sound speeds. These sound speeds may prove to be cornerstones in indicating locally anisotropic stable regions. Subsequently, we consider various models and analyze their stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Indian Journal of Physics
Indian Journal of Physics 物理-物理:综合
CiteScore
3.40
自引率
10.00%
发文量
275
审稿时长
3-8 weeks
期刊介绍: Indian Journal of Physics is a monthly research journal in English published by the Indian Association for the Cultivation of Sciences in collaboration with the Indian Physical Society. The journal publishes refereed papers covering current research in Physics in the following category: Astrophysics, Atmospheric and Space physics; Atomic & Molecular Physics; Biophysics; Condensed Matter & Materials Physics; General & Interdisciplinary Physics; Nonlinear dynamics & Complex Systems; Nuclear Physics; Optics and Spectroscopy; Particle Physics; Plasma Physics; Relativity & Cosmology; Statistical Physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信