基于非线性随机因子模型的保险公司最优投资与再保险

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Hiroaki Hata
{"title":"基于非线性随机因子模型的保险公司最优投资与再保险","authors":"Hiroaki Hata","doi":"10.1007/s00245-025-10265-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider an optimal investment and reinsurance problem faced by an insurer. The insurer invests in a market consisting of a riskless asset and <i>m</i> risky assets. The mean returns and volatilities of the risky assets depend nonlinearly on economic factors. These factors are formulated as the solutions of nonlinear stochastic differential equations. The wealth of the insurer is described by the riskless asset, the risky assets, and a Cramér–Lundberg process for reinsurance. Moreover, the insurer’s preferences are described by an exponential utility function [i.e., CARA (Constant Absolute Risk Aversion) utility function]. By adapting the dynamic programming approach, we derive the Hamilton–Jacobi–Bellman (HJB) equation. We also prove the solvability of the HJB equation by approximating it with a sequence of related Dirichlet problems or by using the extended Feynman–Kac formula. Finally, by proving the verification theorem, we construct the optimal strategy. Additionally, the optimal reinsurance strategy, which is a deterministic function, is developed. The optimal strategy is further obtained using the stochastic maximum principle, coupled forward and backward stochastic differential equations (FBSDEs), and by proving the verification theorem.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"91 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Investment and Reinsurance of Insurers with a Nonlinear Stochastic Factor Model\",\"authors\":\"Hiroaki Hata\",\"doi\":\"10.1007/s00245-025-10265-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider an optimal investment and reinsurance problem faced by an insurer. The insurer invests in a market consisting of a riskless asset and <i>m</i> risky assets. The mean returns and volatilities of the risky assets depend nonlinearly on economic factors. These factors are formulated as the solutions of nonlinear stochastic differential equations. The wealth of the insurer is described by the riskless asset, the risky assets, and a Cramér–Lundberg process for reinsurance. Moreover, the insurer’s preferences are described by an exponential utility function [i.e., CARA (Constant Absolute Risk Aversion) utility function]. By adapting the dynamic programming approach, we derive the Hamilton–Jacobi–Bellman (HJB) equation. We also prove the solvability of the HJB equation by approximating it with a sequence of related Dirichlet problems or by using the extended Feynman–Kac formula. Finally, by proving the verification theorem, we construct the optimal strategy. Additionally, the optimal reinsurance strategy, which is a deterministic function, is developed. The optimal strategy is further obtained using the stochastic maximum principle, coupled forward and backward stochastic differential equations (FBSDEs), and by proving the verification theorem.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"91 3\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-025-10265-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10265-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑保险人面临的最优投资与再保险问题。保险人在一个由一种无风险资产和两种风险资产组成的市场上进行投资。风险资产的平均收益和波动率与经济因素呈非线性关系。这些因素被表示为非线性随机微分方程的解。保险公司的财富由无风险资产、风险资产和再保险的cram - lundberg流程来描述。此外,保险人的偏好用指数效用函数(即CARA (Constant Absolute Risk Aversion)效用函数)来描述。采用动态规划方法,导出了Hamilton-Jacobi-Bellman (HJB)方程。我们还通过用一系列相关的狄利克雷问题逼近HJB方程或使用扩展的费曼-卡茨公式证明了HJB方程的可解性。最后,通过证明验证定理,构造出最优策略。此外,还建立了最优再保险策略的确定性函数。利用随机极大值原理、正、后向耦合随机微分方程(FBSDEs)并证明验证定理,得到了最优策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Investment and Reinsurance of Insurers with a Nonlinear Stochastic Factor Model

In this paper, we consider an optimal investment and reinsurance problem faced by an insurer. The insurer invests in a market consisting of a riskless asset and m risky assets. The mean returns and volatilities of the risky assets depend nonlinearly on economic factors. These factors are formulated as the solutions of nonlinear stochastic differential equations. The wealth of the insurer is described by the riskless asset, the risky assets, and a Cramér–Lundberg process for reinsurance. Moreover, the insurer’s preferences are described by an exponential utility function [i.e., CARA (Constant Absolute Risk Aversion) utility function]. By adapting the dynamic programming approach, we derive the Hamilton–Jacobi–Bellman (HJB) equation. We also prove the solvability of the HJB equation by approximating it with a sequence of related Dirichlet problems or by using the extended Feynman–Kac formula. Finally, by proving the verification theorem, we construct the optimal strategy. Additionally, the optimal reinsurance strategy, which is a deterministic function, is developed. The optimal strategy is further obtained using the stochastic maximum principle, coupled forward and backward stochastic differential equations (FBSDEs), and by proving the verification theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信