{"title":"基于非线性随机因子模型的保险公司最优投资与再保险","authors":"Hiroaki Hata","doi":"10.1007/s00245-025-10265-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider an optimal investment and reinsurance problem faced by an insurer. The insurer invests in a market consisting of a riskless asset and <i>m</i> risky assets. The mean returns and volatilities of the risky assets depend nonlinearly on economic factors. These factors are formulated as the solutions of nonlinear stochastic differential equations. The wealth of the insurer is described by the riskless asset, the risky assets, and a Cramér–Lundberg process for reinsurance. Moreover, the insurer’s preferences are described by an exponential utility function [i.e., CARA (Constant Absolute Risk Aversion) utility function]. By adapting the dynamic programming approach, we derive the Hamilton–Jacobi–Bellman (HJB) equation. We also prove the solvability of the HJB equation by approximating it with a sequence of related Dirichlet problems or by using the extended Feynman–Kac formula. Finally, by proving the verification theorem, we construct the optimal strategy. Additionally, the optimal reinsurance strategy, which is a deterministic function, is developed. The optimal strategy is further obtained using the stochastic maximum principle, coupled forward and backward stochastic differential equations (FBSDEs), and by proving the verification theorem.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"91 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Investment and Reinsurance of Insurers with a Nonlinear Stochastic Factor Model\",\"authors\":\"Hiroaki Hata\",\"doi\":\"10.1007/s00245-025-10265-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider an optimal investment and reinsurance problem faced by an insurer. The insurer invests in a market consisting of a riskless asset and <i>m</i> risky assets. The mean returns and volatilities of the risky assets depend nonlinearly on economic factors. These factors are formulated as the solutions of nonlinear stochastic differential equations. The wealth of the insurer is described by the riskless asset, the risky assets, and a Cramér–Lundberg process for reinsurance. Moreover, the insurer’s preferences are described by an exponential utility function [i.e., CARA (Constant Absolute Risk Aversion) utility function]. By adapting the dynamic programming approach, we derive the Hamilton–Jacobi–Bellman (HJB) equation. We also prove the solvability of the HJB equation by approximating it with a sequence of related Dirichlet problems or by using the extended Feynman–Kac formula. Finally, by proving the verification theorem, we construct the optimal strategy. Additionally, the optimal reinsurance strategy, which is a deterministic function, is developed. The optimal strategy is further obtained using the stochastic maximum principle, coupled forward and backward stochastic differential equations (FBSDEs), and by proving the verification theorem.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"91 3\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-025-10265-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-025-10265-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Optimal Investment and Reinsurance of Insurers with a Nonlinear Stochastic Factor Model
In this paper, we consider an optimal investment and reinsurance problem faced by an insurer. The insurer invests in a market consisting of a riskless asset and m risky assets. The mean returns and volatilities of the risky assets depend nonlinearly on economic factors. These factors are formulated as the solutions of nonlinear stochastic differential equations. The wealth of the insurer is described by the riskless asset, the risky assets, and a Cramér–Lundberg process for reinsurance. Moreover, the insurer’s preferences are described by an exponential utility function [i.e., CARA (Constant Absolute Risk Aversion) utility function]. By adapting the dynamic programming approach, we derive the Hamilton–Jacobi–Bellman (HJB) equation. We also prove the solvability of the HJB equation by approximating it with a sequence of related Dirichlet problems or by using the extended Feynman–Kac formula. Finally, by proving the verification theorem, we construct the optimal strategy. Additionally, the optimal reinsurance strategy, which is a deterministic function, is developed. The optimal strategy is further obtained using the stochastic maximum principle, coupled forward and backward stochastic differential equations (FBSDEs), and by proving the verification theorem.
期刊介绍:
The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.