基于迭代神经网络的PSL优化雷达波形序列设计

Yuxin Yan;Yifeng Wu;Lei Zhang
{"title":"基于迭代神经网络的PSL优化雷达波形序列设计","authors":"Yuxin Yan;Yifeng Wu;Lei Zhang","doi":"10.1109/LGRS.2025.3560073","DOIUrl":null,"url":null,"abstract":"In radar systems, high-resolution waveforms with favorable correlation properties are preferred. This letter addresses the challenge of designing unimodular radar waveform sets with low peak sidelobe level (PSL) in autocorrelation function (ACF). In contrast to conventional methods, this approach does not attempt to transform a nonconvex problem into a convex one through relaxation. Inspired by neural network (NN) optimization techniques, an iterative NN structure for minimizing PSL is proposed in this letter. Using the Mellowmax operation and incorporating an additional penalty term into the loss function, the optimized ACF with low PSL is obtained. Corresponding simulation experiments demonstrate that our method achieves a superior PSL value of 2–3 dB lower than the state-of-the-art method.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radar Waveform Sequence Design for PSL Optimization via Iterative Neural Network\",\"authors\":\"Yuxin Yan;Yifeng Wu;Lei Zhang\",\"doi\":\"10.1109/LGRS.2025.3560073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In radar systems, high-resolution waveforms with favorable correlation properties are preferred. This letter addresses the challenge of designing unimodular radar waveform sets with low peak sidelobe level (PSL) in autocorrelation function (ACF). In contrast to conventional methods, this approach does not attempt to transform a nonconvex problem into a convex one through relaxation. Inspired by neural network (NN) optimization techniques, an iterative NN structure for minimizing PSL is proposed in this letter. Using the Mellowmax operation and incorporating an additional penalty term into the loss function, the optimized ACF with low PSL is obtained. Corresponding simulation experiments demonstrate that our method achieves a superior PSL value of 2–3 dB lower than the state-of-the-art method.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10963730/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10963730/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在雷达系统中,具有良好相关特性的高分辨率波形是首选。本文解决了在自相关函数(ACF)中设计具有低峰值旁瓣电平(PSL)的单模雷达波形集的挑战。与传统方法相比,这种方法并不试图通过松弛将非凸问题转化为凸问题。受神经网络优化技术的启发,本文提出了一种用于最小化PSL的迭代神经网络结构。利用Mellowmax运算并在损失函数中加入额外的惩罚项,得到了具有低PSL的优化ACF。相应的仿真实验表明,我们的方法获得了比现有方法低2-3 dB的优越PSL值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radar Waveform Sequence Design for PSL Optimization via Iterative Neural Network
In radar systems, high-resolution waveforms with favorable correlation properties are preferred. This letter addresses the challenge of designing unimodular radar waveform sets with low peak sidelobe level (PSL) in autocorrelation function (ACF). In contrast to conventional methods, this approach does not attempt to transform a nonconvex problem into a convex one through relaxation. Inspired by neural network (NN) optimization techniques, an iterative NN structure for minimizing PSL is proposed in this letter. Using the Mellowmax operation and incorporating an additional penalty term into the loss function, the optimized ACF with low PSL is obtained. Corresponding simulation experiments demonstrate that our method achieves a superior PSL value of 2–3 dB lower than the state-of-the-art method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信