基于编码器-解码器ConvLSTM的全球电离层预报优化模型

Cheng Wang;Kaiyu Xue;Chuang Shi
{"title":"基于编码器-解码器ConvLSTM的全球电离层预报优化模型","authors":"Cheng Wang;Kaiyu Xue;Chuang Shi","doi":"10.1109/LGRS.2025.3565645","DOIUrl":null,"url":null,"abstract":"The ionosphere is vital for satellite navigation and radio communication, but observational limitations necessitate ionospheric forecasting. The least squares collocation (LSC) method is commonly used for global navigation satellite system (GNSS)-based global ionospheric forecasting, though its accuracy and stability need improvement. This study introduces two optimized models based on the ConvLSTM cell with an encoder-decoder structure to enhance forecasting performance. Using seven years of historical data, the model provides stable forecasts for the following year. Tests from 2015 to 2020 show that optimization reduces root mean square error (RMSE) by 10.159%–16.363% compared to the unoptimized method. The encoder-decoder ConvLSTM-B model achieves the best performance, lowering RMSE by 2.031%–8.547% compared to the ConvLSTM-A model. These results highlight the effectiveness of the proposed approach in improving ionospheric forecast accuracy.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optimized Model With Encoder-Decoder ConvLSTM for Global Ionospheric Forecasting\",\"authors\":\"Cheng Wang;Kaiyu Xue;Chuang Shi\",\"doi\":\"10.1109/LGRS.2025.3565645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ionosphere is vital for satellite navigation and radio communication, but observational limitations necessitate ionospheric forecasting. The least squares collocation (LSC) method is commonly used for global navigation satellite system (GNSS)-based global ionospheric forecasting, though its accuracy and stability need improvement. This study introduces two optimized models based on the ConvLSTM cell with an encoder-decoder structure to enhance forecasting performance. Using seven years of historical data, the model provides stable forecasts for the following year. Tests from 2015 to 2020 show that optimization reduces root mean square error (RMSE) by 10.159%–16.363% compared to the unoptimized method. The encoder-decoder ConvLSTM-B model achieves the best performance, lowering RMSE by 2.031%–8.547% compared to the ConvLSTM-A model. These results highlight the effectiveness of the proposed approach in improving ionospheric forecast accuracy.\",\"PeriodicalId\":91017,\"journal\":{\"name\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"volume\":\"22 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10980111/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10980111/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电离层对卫星导航和无线电通信至关重要,但观测的局限性使电离层预报成为必要。最小二乘配置(LSC)方法是基于全球导航卫星系统(GNSS)的全球电离层预报中常用的方法,但其精度和稳定性有待提高。为了提高预测性能,本文引入了两种基于ConvLSTM单元的优化模型,该模型具有编解码器结构。利用7年的历史数据,该模型为下一年提供了稳定的预测。2015年至2020年的测试表明,与未优化方法相比,优化后的均方根误差(RMSE)降低了10.159% ~ 16.363%。编解码器ConvLSTM-B模型的性能最好,与ConvLSTM-A模型相比,RMSE降低了2.031% ~ 8.547%。这些结果突出了该方法在提高电离层预报精度方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Optimized Model With Encoder-Decoder ConvLSTM for Global Ionospheric Forecasting
The ionosphere is vital for satellite navigation and radio communication, but observational limitations necessitate ionospheric forecasting. The least squares collocation (LSC) method is commonly used for global navigation satellite system (GNSS)-based global ionospheric forecasting, though its accuracy and stability need improvement. This study introduces two optimized models based on the ConvLSTM cell with an encoder-decoder structure to enhance forecasting performance. Using seven years of historical data, the model provides stable forecasts for the following year. Tests from 2015 to 2020 show that optimization reduces root mean square error (RMSE) by 10.159%–16.363% compared to the unoptimized method. The encoder-decoder ConvLSTM-B model achieves the best performance, lowering RMSE by 2.031%–8.547% compared to the ConvLSTM-A model. These results highlight the effectiveness of the proposed approach in improving ionospheric forecast accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信