使用自定义特征映射增强医疗保健应用程序的量子支持向量机

IF 7.6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Riya Bansal , Nikhil Kumar Rajput , Megha Khanna
{"title":"使用自定义特征映射增强医疗保健应用程序的量子支持向量机","authors":"Riya Bansal ,&nbsp;Nikhil Kumar Rajput ,&nbsp;Megha Khanna","doi":"10.1016/j.knosys.2025.113669","DOIUrl":null,"url":null,"abstract":"<div><div>Quantum support vector machine (QSVM), based on the principles of quantum mechanics has revolutionized complex data processing tasks in several healthcare applications. Feature maps play a crucial role in transforming input data into a higher-dimensional space, enabling QSVM to capture intricate patterns and improve classification performance. This study intends to further enhance the performance of the QSVM by introducing five new custom feature maps. Furthermore, the study assesses the performance of these enhancements to the QSVM by empirically validating it for classification on four medical open-source datasets. The performance of QSVM using the custom feature maps is also compared with two standard feature maps (ZFeatureMap and ZZFeatureMap) available in Qiskit framework. The results indicate that custom feature maps outperform standard ones with an increase of up to 5% in Area Under Receiver Operating Characteristic Curve (AUC) values, 18% in F1-score, and 25% in Matthews Correlation Coefficient (MCC) values.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"320 ","pages":"Article 113669"},"PeriodicalIF":7.6000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing quantum support vector machine for healthcare applications using custom feature maps\",\"authors\":\"Riya Bansal ,&nbsp;Nikhil Kumar Rajput ,&nbsp;Megha Khanna\",\"doi\":\"10.1016/j.knosys.2025.113669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Quantum support vector machine (QSVM), based on the principles of quantum mechanics has revolutionized complex data processing tasks in several healthcare applications. Feature maps play a crucial role in transforming input data into a higher-dimensional space, enabling QSVM to capture intricate patterns and improve classification performance. This study intends to further enhance the performance of the QSVM by introducing five new custom feature maps. Furthermore, the study assesses the performance of these enhancements to the QSVM by empirically validating it for classification on four medical open-source datasets. The performance of QSVM using the custom feature maps is also compared with two standard feature maps (ZFeatureMap and ZZFeatureMap) available in Qiskit framework. The results indicate that custom feature maps outperform standard ones with an increase of up to 5% in Area Under Receiver Operating Characteristic Curve (AUC) values, 18% in F1-score, and 25% in Matthews Correlation Coefficient (MCC) values.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"320 \",\"pages\":\"Article 113669\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705125007154\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125007154","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

基于量子力学原理的量子支持向量机(QSVM)在一些医疗保健应用中彻底改变了复杂的数据处理任务。特征映射在将输入数据转换到高维空间中起着至关重要的作用,使QSVM能够捕获复杂的模式并提高分类性能。本研究旨在通过引入五个新的自定义特征映射来进一步提高QSVM的性能。此外,该研究通过对四个医学开源数据集的分类进行实证验证,评估了这些改进对QSVM的性能。使用自定义特征映射的QSVM的性能还与Qiskit框架中可用的两个标准特征映射(ZFeatureMap和ZZFeatureMap)进行了比较。结果表明,自定义特征图在受试者工作特征曲线下面积(AUC)值、f1得分和马修斯相关系数(MCC)值上的表现优于标准特征图,分别提高了5%、18%和25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing quantum support vector machine for healthcare applications using custom feature maps
Quantum support vector machine (QSVM), based on the principles of quantum mechanics has revolutionized complex data processing tasks in several healthcare applications. Feature maps play a crucial role in transforming input data into a higher-dimensional space, enabling QSVM to capture intricate patterns and improve classification performance. This study intends to further enhance the performance of the QSVM by introducing five new custom feature maps. Furthermore, the study assesses the performance of these enhancements to the QSVM by empirically validating it for classification on four medical open-source datasets. The performance of QSVM using the custom feature maps is also compared with two standard feature maps (ZFeatureMap and ZZFeatureMap) available in Qiskit framework. The results indicate that custom feature maps outperform standard ones with an increase of up to 5% in Area Under Receiver Operating Characteristic Curve (AUC) values, 18% in F1-score, and 25% in Matthews Correlation Coefficient (MCC) values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信