农作物杂草检测的分割技术综述

Akanksha Bodhale , Seema Verma
{"title":"农作物杂草检测的分割技术综述","authors":"Akanksha Bodhale ,&nbsp;Seema Verma","doi":"10.1016/j.procs.2025.03.307","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the role of deep learning in identifying and managing weeds in agriculture, a critical challenge for enhancing crop productivity. As the global population grows, increasing food production is essential. Weeds significantly hinder crop growth, making accurate identification vital. Deep learning techniques, which analyze elements like color, form, texture, and spectrum, offer promising solutions for distinguishing between crops and weeds. This review examines various segmentation techniques used in weed identification, comparing their effectiveness and potential for practical application. The findings aim to advance weed management strategies, contributing to improved agricultural productivity and the development of automated systems for precise weed detection.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"259 ","pages":"Pages 61-70"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of Segmentation Techniques for Weed Detection in Agricultural Crops\",\"authors\":\"Akanksha Bodhale ,&nbsp;Seema Verma\",\"doi\":\"10.1016/j.procs.2025.03.307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the role of deep learning in identifying and managing weeds in agriculture, a critical challenge for enhancing crop productivity. As the global population grows, increasing food production is essential. Weeds significantly hinder crop growth, making accurate identification vital. Deep learning techniques, which analyze elements like color, form, texture, and spectrum, offer promising solutions for distinguishing between crops and weeds. This review examines various segmentation techniques used in weed identification, comparing their effectiveness and potential for practical application. The findings aim to advance weed management strategies, contributing to improved agricultural productivity and the development of automated systems for precise weed detection.</div></div>\",\"PeriodicalId\":20465,\"journal\":{\"name\":\"Procedia Computer Science\",\"volume\":\"259 \",\"pages\":\"Pages 61-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877050925010518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050925010518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了深度学习在农业杂草识别和管理中的作用,这是提高作物生产力的关键挑战。随着全球人口的增长,增加粮食产量至关重要。杂草严重阻碍作物生长,使准确识别至关重要。深度学习技术可以分析颜色、形状、纹理和光谱等元素,为区分作物和杂草提供了有希望的解决方案。本文综述了用于杂草识别的各种分割技术,比较了它们的有效性和实际应用潜力。研究结果旨在推进杂草管理策略,有助于提高农业生产力和开发精确检测杂草的自动化系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review of Segmentation Techniques for Weed Detection in Agricultural Crops
This study explores the role of deep learning in identifying and managing weeds in agriculture, a critical challenge for enhancing crop productivity. As the global population grows, increasing food production is essential. Weeds significantly hinder crop growth, making accurate identification vital. Deep learning techniques, which analyze elements like color, form, texture, and spectrum, offer promising solutions for distinguishing between crops and weeds. This review examines various segmentation techniques used in weed identification, comparing their effectiveness and potential for practical application. The findings aim to advance weed management strategies, contributing to improved agricultural productivity and the development of automated systems for precise weed detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信