长尾分类对比变压器网络

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Johannes Melsbach, Frederic Haase, Sven Stahlmann, Stefan Hirschmeier, Detlef Schoder
{"title":"长尾分类对比变压器网络","authors":"Johannes Melsbach,&nbsp;Frederic Haase,&nbsp;Sven Stahlmann,&nbsp;Stefan Hirschmeier,&nbsp;Detlef Schoder","doi":"10.1016/j.knosys.2025.113607","DOIUrl":null,"url":null,"abstract":"<div><div>In the context of big data, multi-label text classification presents considerable challenges, most notably the long-tail problem, wherein a small number of labels account for the majority of instances, while the vast majority of labels occur only rarely. This imbalance creates a critical bias in classification models, leading to suboptimal performance on tail labels that significantly impacts applications such as recommender systems and search engines. We present CTN-LT (Contrastive Transformer Network for Long Tail Classification), a novel dual-encoder architecture that combines adapted loss functions, contrastive learning and reframes the multi-label text classification as a semantic similarity task to specifically enhance tail label performance. Our method achieves state-of-the-art performance on tail labels while maintaining competitive performance on head labels across multiple benchmark datasets. The model demonstrates superior few-shot and zero-shot capabilities, making it particularly valuable for dynamic environments where new categories frequently emerge. We release our code at <span><span>https://github.com/jmelsbach/CTN-LT</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"320 ","pages":"Article 113607"},"PeriodicalIF":7.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contrastive Transformer Network for Long Tail Classification\",\"authors\":\"Johannes Melsbach,&nbsp;Frederic Haase,&nbsp;Sven Stahlmann,&nbsp;Stefan Hirschmeier,&nbsp;Detlef Schoder\",\"doi\":\"10.1016/j.knosys.2025.113607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the context of big data, multi-label text classification presents considerable challenges, most notably the long-tail problem, wherein a small number of labels account for the majority of instances, while the vast majority of labels occur only rarely. This imbalance creates a critical bias in classification models, leading to suboptimal performance on tail labels that significantly impacts applications such as recommender systems and search engines. We present CTN-LT (Contrastive Transformer Network for Long Tail Classification), a novel dual-encoder architecture that combines adapted loss functions, contrastive learning and reframes the multi-label text classification as a semantic similarity task to specifically enhance tail label performance. Our method achieves state-of-the-art performance on tail labels while maintaining competitive performance on head labels across multiple benchmark datasets. The model demonstrates superior few-shot and zero-shot capabilities, making it particularly valuable for dynamic environments where new categories frequently emerge. We release our code at <span><span>https://github.com/jmelsbach/CTN-LT</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"320 \",\"pages\":\"Article 113607\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705125006537\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125006537","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在大数据背景下,多标签文本分类提出了相当大的挑战,最明显的是长尾问题,其中少数标签占大多数实例,而绝大多数标签很少出现。这种不平衡在分类模型中造成了严重的偏差,导致尾标签的次优性能,严重影响推荐系统和搜索引擎等应用程序。我们提出了一种新的双编码器结构CTN-LT(对比变压器网络用于长尾分类),它结合了自适应损失函数、对比学习,并将多标签文本分类重新构建为语义相似任务,以特别提高尾标签的性能。我们的方法在尾部标签上实现了最先进的性能,同时在多个基准数据集上保持了头部标签的竞争性能。该模型展示了优越的少射和零射能力,使其在经常出现新类别的动态环境中特别有价值。我们在https://github.com/jmelsbach/CTN-LT上发布我们的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contrastive Transformer Network for Long Tail Classification
In the context of big data, multi-label text classification presents considerable challenges, most notably the long-tail problem, wherein a small number of labels account for the majority of instances, while the vast majority of labels occur only rarely. This imbalance creates a critical bias in classification models, leading to suboptimal performance on tail labels that significantly impacts applications such as recommender systems and search engines. We present CTN-LT (Contrastive Transformer Network for Long Tail Classification), a novel dual-encoder architecture that combines adapted loss functions, contrastive learning and reframes the multi-label text classification as a semantic similarity task to specifically enhance tail label performance. Our method achieves state-of-the-art performance on tail labels while maintaining competitive performance on head labels across multiple benchmark datasets. The model demonstrates superior few-shot and zero-shot capabilities, making it particularly valuable for dynamic environments where new categories frequently emerge. We release our code at https://github.com/jmelsbach/CTN-LT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信