面向多源长尾分布故障诊断的域类对齐两阶段图时空模型

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qianwen Cui , Shuilong He , Jinglong Chen , Chao Li , Chaofan Hu
{"title":"面向多源长尾分布故障诊断的域类对齐两阶段图时空模型","authors":"Qianwen Cui ,&nbsp;Shuilong He ,&nbsp;Jinglong Chen ,&nbsp;Chao Li ,&nbsp;Chaofan Hu","doi":"10.1016/j.knosys.2025.113698","DOIUrl":null,"url":null,"abstract":"<div><div>In practical engineering, monitoring data often follow multi-domain long-tailed distributions (MDLT), where label imbalance, domain shift, and cross-domain label divergence are deeply intertwined, posing significant challenges for intelligent fault diagnosis. To address these, we propose a novel two-stage decoupled graph spatiotemporal network guided by a balanced domain-class alignment loss. This framework introduces domain-class pairs and constructs a domain-class transferability graph using distance metrics. Building upon this, we propose an intensified Balanced Domain-Class Distribution Alignment (iBoDA) loss, which strengthens the similarity of intra-domain and cross-domain features within the same class while attenuating the similarity across different classes. This loss function calibrates and aligns domain-class distributions in imbalanced datasets, enhancing generalization for out-of-distribution samples. Furthermore, we design a multi-source fusion two-stage decoupled graph spatiotemporal network to extract domain-invariant, noise-resistant representations by capturing multi-dimensional spatiotemporal dependencies. Extensive experiments on three MDLT datasets, benchmarked against 15 state-of-the-art algorithms, validate the method's effectiveness, robustness, and computational efficiency in addressing MDLT challenges in industrial fault diagnosis.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"320 ","pages":"Article 113698"},"PeriodicalIF":7.2000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A two-stage graph spatiotemporal model with domain-class alignment for fault diagnosis under multi-source long-tailed distributions\",\"authors\":\"Qianwen Cui ,&nbsp;Shuilong He ,&nbsp;Jinglong Chen ,&nbsp;Chao Li ,&nbsp;Chaofan Hu\",\"doi\":\"10.1016/j.knosys.2025.113698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In practical engineering, monitoring data often follow multi-domain long-tailed distributions (MDLT), where label imbalance, domain shift, and cross-domain label divergence are deeply intertwined, posing significant challenges for intelligent fault diagnosis. To address these, we propose a novel two-stage decoupled graph spatiotemporal network guided by a balanced domain-class alignment loss. This framework introduces domain-class pairs and constructs a domain-class transferability graph using distance metrics. Building upon this, we propose an intensified Balanced Domain-Class Distribution Alignment (iBoDA) loss, which strengthens the similarity of intra-domain and cross-domain features within the same class while attenuating the similarity across different classes. This loss function calibrates and aligns domain-class distributions in imbalanced datasets, enhancing generalization for out-of-distribution samples. Furthermore, we design a multi-source fusion two-stage decoupled graph spatiotemporal network to extract domain-invariant, noise-resistant representations by capturing multi-dimensional spatiotemporal dependencies. Extensive experiments on three MDLT datasets, benchmarked against 15 state-of-the-art algorithms, validate the method's effectiveness, robustness, and computational efficiency in addressing MDLT challenges in industrial fault diagnosis.</div></div>\",\"PeriodicalId\":49939,\"journal\":{\"name\":\"Knowledge-Based Systems\",\"volume\":\"320 \",\"pages\":\"Article 113698\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge-Based Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950705125007440\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125007440","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在实际工程中,监测数据往往遵循多域长尾分布(MDLT),其中标签不平衡、域漂移和跨域标签分歧深深交织在一起,给智能故障诊断带来了重大挑战。为了解决这些问题,我们提出了一种新的两阶段解耦图时空网络,该网络由平衡的领域类对齐损失引导。该框架引入了领域类对,并利用距离度量构造了领域类可转移性图。在此基础上,我们提出了一种增强的平衡域-类分布对齐(iBoDA)损失,该损失增强了同一类内和跨域特征的相似性,同时减弱了不同类之间的相似性。该损失函数校准和对齐不平衡数据集中的域类分布,增强了分布外样本的泛化。此外,我们设计了一个多源融合两阶段解耦图时空网络,通过捕获多维时空依赖关系来提取域不变、抗噪声的表示。在三个MDLT数据集上进行了广泛的实验,并对15种最先进的算法进行了基准测试,验证了该方法在解决MDLT在工业故障诊断中的挑战方面的有效性、鲁棒性和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A two-stage graph spatiotemporal model with domain-class alignment for fault diagnosis under multi-source long-tailed distributions
In practical engineering, monitoring data often follow multi-domain long-tailed distributions (MDLT), where label imbalance, domain shift, and cross-domain label divergence are deeply intertwined, posing significant challenges for intelligent fault diagnosis. To address these, we propose a novel two-stage decoupled graph spatiotemporal network guided by a balanced domain-class alignment loss. This framework introduces domain-class pairs and constructs a domain-class transferability graph using distance metrics. Building upon this, we propose an intensified Balanced Domain-Class Distribution Alignment (iBoDA) loss, which strengthens the similarity of intra-domain and cross-domain features within the same class while attenuating the similarity across different classes. This loss function calibrates and aligns domain-class distributions in imbalanced datasets, enhancing generalization for out-of-distribution samples. Furthermore, we design a multi-source fusion two-stage decoupled graph spatiotemporal network to extract domain-invariant, noise-resistant representations by capturing multi-dimensional spatiotemporal dependencies. Extensive experiments on three MDLT datasets, benchmarked against 15 state-of-the-art algorithms, validate the method's effectiveness, robustness, and computational efficiency in addressing MDLT challenges in industrial fault diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信