利用实时遥测数据开发近地轨道航天器太阳阵建模环境

Ahmed Mokhtar , Mohamed Ibrahim , Mohamed E. Hanafy , Fawzy H. Amer ElTohamy , Yehia Z. Elhalwagy
{"title":"利用实时遥测数据开发近地轨道航天器太阳阵建模环境","authors":"Ahmed Mokhtar ,&nbsp;Mohamed Ibrahim ,&nbsp;Mohamed E. Hanafy ,&nbsp;Fawzy H. Amer ElTohamy ,&nbsp;Yehia Z. Elhalwagy","doi":"10.1016/j.fraope.2025.100268","DOIUrl":null,"url":null,"abstract":"<div><div>Spacecraft solar arrays convert sunlight into electrical energy to fulfil the energy requirements of various missions. This work proposes a comprehensive environment for accurate power operation predictions. Specifically, this environment simulates the behaviour of a body-mounted solar array. Furthermore, the designing and modelling processes of the solar array require considering different technical and practical constraints posed by the space environment. These challenges necessitate a thorough evaluation of all potential sources of losses and degradation. Compared to conventional approaches, our novel SSA model incorporates the complete spacecraft mission design scenario, thus it incorporates the operational cyclogram and power budget calculation. To substantiate our proposed method, telemetry data from the commercial LEOS-50 platform is leveraged to develop an experimental, mathematical, and thermal in-orbit model based on GaAs technology. This approach stands out for its exceptional accuracy in predicting the output power characteristics of solar panels. Therefore, it ensures achieving mission requirements from inception to completion in the beginning-of-life and end-of-life stages. The results demonstrate the success of the SSA operation in converting sunlight into electrical energy with a high conversion rate.</div></div>","PeriodicalId":100554,"journal":{"name":"Franklin Open","volume":"11 ","pages":"Article 100268"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a modelling environment of spacecraft solar array in low Earth orbit using real-time telemetry data\",\"authors\":\"Ahmed Mokhtar ,&nbsp;Mohamed Ibrahim ,&nbsp;Mohamed E. Hanafy ,&nbsp;Fawzy H. Amer ElTohamy ,&nbsp;Yehia Z. Elhalwagy\",\"doi\":\"10.1016/j.fraope.2025.100268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Spacecraft solar arrays convert sunlight into electrical energy to fulfil the energy requirements of various missions. This work proposes a comprehensive environment for accurate power operation predictions. Specifically, this environment simulates the behaviour of a body-mounted solar array. Furthermore, the designing and modelling processes of the solar array require considering different technical and practical constraints posed by the space environment. These challenges necessitate a thorough evaluation of all potential sources of losses and degradation. Compared to conventional approaches, our novel SSA model incorporates the complete spacecraft mission design scenario, thus it incorporates the operational cyclogram and power budget calculation. To substantiate our proposed method, telemetry data from the commercial LEOS-50 platform is leveraged to develop an experimental, mathematical, and thermal in-orbit model based on GaAs technology. This approach stands out for its exceptional accuracy in predicting the output power characteristics of solar panels. Therefore, it ensures achieving mission requirements from inception to completion in the beginning-of-life and end-of-life stages. The results demonstrate the success of the SSA operation in converting sunlight into electrical energy with a high conversion rate.</div></div>\",\"PeriodicalId\":100554,\"journal\":{\"name\":\"Franklin Open\",\"volume\":\"11 \",\"pages\":\"Article 100268\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Franklin Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773186325000581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Franklin Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773186325000581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

航天器太阳能电池阵列将太阳光转化为电能,以满足各种任务的能源需求。这项工作为准确的电力运行预测提供了一个全面的环境。具体来说,这个环境模拟了一个安装在身体上的太阳能电池阵列的行为。此外,太阳能电池阵的设计和建模过程需要考虑空间环境造成的各种技术和实际限制。面对这些挑战,必须对所有潜在的损失和退化来源进行全面评估。与传统方法相比,我们的新SSA模型包含了完整的航天器任务设计场景,因此它包含了运行周期图和功率预算计算。为了验证我们提出的方法,利用商业LEOS-50平台的遥测数据来开发基于GaAs技术的实验、数学和热在轨模型。这种方法在预测太阳能电池板的输出功率特性方面具有卓越的准确性。因此,它确保在生命开始和生命结束阶段实现从开始到完成的任务要求。结果表明,SSA操作成功地将太阳光转化为电能,转化率很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing a modelling environment of spacecraft solar array in low Earth orbit using real-time telemetry data
Spacecraft solar arrays convert sunlight into electrical energy to fulfil the energy requirements of various missions. This work proposes a comprehensive environment for accurate power operation predictions. Specifically, this environment simulates the behaviour of a body-mounted solar array. Furthermore, the designing and modelling processes of the solar array require considering different technical and practical constraints posed by the space environment. These challenges necessitate a thorough evaluation of all potential sources of losses and degradation. Compared to conventional approaches, our novel SSA model incorporates the complete spacecraft mission design scenario, thus it incorporates the operational cyclogram and power budget calculation. To substantiate our proposed method, telemetry data from the commercial LEOS-50 platform is leveraged to develop an experimental, mathematical, and thermal in-orbit model based on GaAs technology. This approach stands out for its exceptional accuracy in predicting the output power characteristics of solar panels. Therefore, it ensures achieving mission requirements from inception to completion in the beginning-of-life and end-of-life stages. The results demonstrate the success of the SSA operation in converting sunlight into electrical energy with a high conversion rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信