低振荡磁场对海藻酸钠基混合纳米流体在两个旋转圆盘间流动的影响:基于人工神经网络的研究

IF 8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Ram Prakash Sharma , Bimal Kumar Barik , V. Vinay Kumar , Abhishek Sharma
{"title":"低振荡磁场对海藻酸钠基混合纳米流体在两个旋转圆盘间流动的影响:基于人工神经网络的研究","authors":"Ram Prakash Sharma ,&nbsp;Bimal Kumar Barik ,&nbsp;V. Vinay Kumar ,&nbsp;Abhishek Sharma","doi":"10.1016/j.engappai.2025.111101","DOIUrl":null,"url":null,"abstract":"<div><div>The application of hybrid nanofluids is pivotal in improving heat transfer, and aiding in the thermal regulation of electronic devices, heat exchangers, and cutting-edge manufacturing processes. The integration of hybrid nanofluids and artificial neural networks enhances the development of smart cooling systems, optimizing thermal regulation. This study examines the flow of magnetite <span><math><mrow><mo>(</mo><mrow><mi>F</mi><msub><mi>e</mi><mn>3</mn></msub><msub><mi>O</mi><mn>4</mn></msub></mrow><mo>)</mo></mrow></math></span> and graphene (<span><math><mrow><mi>G</mi><mi>r</mi></mrow></math></span>) nanoparticles with a base fluid sodium alginate over a porous coaxial disk in a low oscillating magnetic field in conjugation with thermal radiation. The Runge-Kutta 4th order scheme is operated to analyze the characteristics of the flow fields followed by the suitable transformation used for the conversion of dimensional governing equations to their corresponding non-dimensional form. In a novel way, this research utilizes artificial neural networks (ANN) to design an effective predictive model for thermal transfer rate, comparing its performance with response surface methodology (RSM) and validating the results through analysis of variance (ANOVA). The outcomes are the velocity distribution decreases with a higher magnetization parameter and a large Reynolds number results in a higher velocity. Nusselt number achieves it most efficient thermal transfer rate at 88 epoch with gradient of <span><math><mrow><mn>9.9805</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow></math></span>.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"155 ","pages":"Article 111101"},"PeriodicalIF":8.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Illustration of low oscillating magnetic field on sodium alginate-based hybrid nanofluid flow between two revolving disks: An artificial neural network-based study\",\"authors\":\"Ram Prakash Sharma ,&nbsp;Bimal Kumar Barik ,&nbsp;V. Vinay Kumar ,&nbsp;Abhishek Sharma\",\"doi\":\"10.1016/j.engappai.2025.111101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The application of hybrid nanofluids is pivotal in improving heat transfer, and aiding in the thermal regulation of electronic devices, heat exchangers, and cutting-edge manufacturing processes. The integration of hybrid nanofluids and artificial neural networks enhances the development of smart cooling systems, optimizing thermal regulation. This study examines the flow of magnetite <span><math><mrow><mo>(</mo><mrow><mi>F</mi><msub><mi>e</mi><mn>3</mn></msub><msub><mi>O</mi><mn>4</mn></msub></mrow><mo>)</mo></mrow></math></span> and graphene (<span><math><mrow><mi>G</mi><mi>r</mi></mrow></math></span>) nanoparticles with a base fluid sodium alginate over a porous coaxial disk in a low oscillating magnetic field in conjugation with thermal radiation. The Runge-Kutta 4th order scheme is operated to analyze the characteristics of the flow fields followed by the suitable transformation used for the conversion of dimensional governing equations to their corresponding non-dimensional form. In a novel way, this research utilizes artificial neural networks (ANN) to design an effective predictive model for thermal transfer rate, comparing its performance with response surface methodology (RSM) and validating the results through analysis of variance (ANOVA). The outcomes are the velocity distribution decreases with a higher magnetization parameter and a large Reynolds number results in a higher velocity. Nusselt number achieves it most efficient thermal transfer rate at 88 epoch with gradient of <span><math><mrow><mn>9.9805</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow></math></span>.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"155 \",\"pages\":\"Article 111101\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197625011029\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197625011029","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

混合纳米流体的应用对于改善传热、帮助电子设备、热交换器和尖端制造工艺的热调节至关重要。混合纳米流体和人工神经网络的集成促进了智能冷却系统的发展,优化了热调节。本研究考察了磁铁矿(Fe3O4)和石墨烯(Gr)纳米颗粒与碱性流体海藻酸钠在低振荡磁场和热辐射耦合下在多孔同轴盘上的流动。采用龙格-库塔四阶格式分析了流场的特性,并采用适当的变换将量纲控制方程转换为相应的无量纲形式。本研究利用人工神经网络(ANN)设计了一种有效的热传递率预测模型,并将其与响应面法(RSM)的性能进行了比较,并通过方差分析(ANOVA)对结果进行了验证。结果表明:磁化参数越高,速度分布越小;雷诺数越大,速度越快。努塞尔数在梯度为9.9805×10−8的88历元时达到最有效的传热速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Illustration of low oscillating magnetic field on sodium alginate-based hybrid nanofluid flow between two revolving disks: An artificial neural network-based study
The application of hybrid nanofluids is pivotal in improving heat transfer, and aiding in the thermal regulation of electronic devices, heat exchangers, and cutting-edge manufacturing processes. The integration of hybrid nanofluids and artificial neural networks enhances the development of smart cooling systems, optimizing thermal regulation. This study examines the flow of magnetite (Fe3O4) and graphene (Gr) nanoparticles with a base fluid sodium alginate over a porous coaxial disk in a low oscillating magnetic field in conjugation with thermal radiation. The Runge-Kutta 4th order scheme is operated to analyze the characteristics of the flow fields followed by the suitable transformation used for the conversion of dimensional governing equations to their corresponding non-dimensional form. In a novel way, this research utilizes artificial neural networks (ANN) to design an effective predictive model for thermal transfer rate, comparing its performance with response surface methodology (RSM) and validating the results through analysis of variance (ANOVA). The outcomes are the velocity distribution decreases with a higher magnetization parameter and a large Reynolds number results in a higher velocity. Nusselt number achieves it most efficient thermal transfer rate at 88 epoch with gradient of 9.9805×108.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信