Talifu Zikereya , Chuang Liu , Longwei Wei , Yinhao Wang , Zhizhen Zhang , Chuanliang Han , Kaixuan Shi , Wei Chen
{"title":"大麻素受体1介导运动诱导的帕金森小鼠运动技能学习和表现的改善","authors":"Talifu Zikereya , Chuang Liu , Longwei Wei , Yinhao Wang , Zhizhen Zhang , Chuanliang Han , Kaixuan Shi , Wei Chen","doi":"10.1016/j.expneurol.2025.115289","DOIUrl":null,"url":null,"abstract":"<div><div>The endocannabinoid system (eCBs) modulates corticostriatal circuits through cannabinoid receptor 1 (CB1R). These circuits are crucial for encoding goal-directed and habitual learning behaviors and are implicated in the occurrence and progression of Parkinson's disease (PD). While exercise has been shown to enhance motor performance and reverse learning deficits in PD patients, the underlying molecular mechanisms remain unclear. We hypothesized that a treadmill training program could rescue changes in striatal plasticity and ameliorate early motor and cognitive deficits in mice subjected to an intrastriatal 6-hydroxydopamine injection. Our findings demonstrated that exercise training would improve motor performance and learning abilities in PD mice. Moreover, both immunofluorescence and reverse transcription polymerase chain reaction results suggested that corticostriatal activation decreased CB1R expression in the dorsomedial striatum of PD mice but increased expression in the substantia nigra pars reticulata following treadmill exercise. These results suggest that dysregulated CB1R expression is associated with the pathogenesis of Parkinsonism, highlighting the vital role of the CB1R in corticostriatal pathway functionality enhanced by exercise. Our results suggest the potential benefits of treadmill exercise in alleviating Parkinsonism, providing valuable insights into future potential treating strategies.</div></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":"391 ","pages":"Article 115289"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The cannabinoid receptor 1 mediates exercise-induced improvements of motor skill learning and performance in parkinsonian mouse\",\"authors\":\"Talifu Zikereya , Chuang Liu , Longwei Wei , Yinhao Wang , Zhizhen Zhang , Chuanliang Han , Kaixuan Shi , Wei Chen\",\"doi\":\"10.1016/j.expneurol.2025.115289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The endocannabinoid system (eCBs) modulates corticostriatal circuits through cannabinoid receptor 1 (CB1R). These circuits are crucial for encoding goal-directed and habitual learning behaviors and are implicated in the occurrence and progression of Parkinson's disease (PD). While exercise has been shown to enhance motor performance and reverse learning deficits in PD patients, the underlying molecular mechanisms remain unclear. We hypothesized that a treadmill training program could rescue changes in striatal plasticity and ameliorate early motor and cognitive deficits in mice subjected to an intrastriatal 6-hydroxydopamine injection. Our findings demonstrated that exercise training would improve motor performance and learning abilities in PD mice. Moreover, both immunofluorescence and reverse transcription polymerase chain reaction results suggested that corticostriatal activation decreased CB1R expression in the dorsomedial striatum of PD mice but increased expression in the substantia nigra pars reticulata following treadmill exercise. These results suggest that dysregulated CB1R expression is associated with the pathogenesis of Parkinsonism, highlighting the vital role of the CB1R in corticostriatal pathway functionality enhanced by exercise. Our results suggest the potential benefits of treadmill exercise in alleviating Parkinsonism, providing valuable insights into future potential treating strategies.</div></div>\",\"PeriodicalId\":12246,\"journal\":{\"name\":\"Experimental Neurology\",\"volume\":\"391 \",\"pages\":\"Article 115289\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014488625001530\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488625001530","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
The cannabinoid receptor 1 mediates exercise-induced improvements of motor skill learning and performance in parkinsonian mouse
The endocannabinoid system (eCBs) modulates corticostriatal circuits through cannabinoid receptor 1 (CB1R). These circuits are crucial for encoding goal-directed and habitual learning behaviors and are implicated in the occurrence and progression of Parkinson's disease (PD). While exercise has been shown to enhance motor performance and reverse learning deficits in PD patients, the underlying molecular mechanisms remain unclear. We hypothesized that a treadmill training program could rescue changes in striatal plasticity and ameliorate early motor and cognitive deficits in mice subjected to an intrastriatal 6-hydroxydopamine injection. Our findings demonstrated that exercise training would improve motor performance and learning abilities in PD mice. Moreover, both immunofluorescence and reverse transcription polymerase chain reaction results suggested that corticostriatal activation decreased CB1R expression in the dorsomedial striatum of PD mice but increased expression in the substantia nigra pars reticulata following treadmill exercise. These results suggest that dysregulated CB1R expression is associated with the pathogenesis of Parkinsonism, highlighting the vital role of the CB1R in corticostriatal pathway functionality enhanced by exercise. Our results suggest the potential benefits of treadmill exercise in alleviating Parkinsonism, providing valuable insights into future potential treating strategies.
期刊介绍:
Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.