基于机器学习和生产数据的层间识别和连通性分析:以M油田为例

Xiaoshuai Wu , Yuanliang Zhao , Jianpeng Zhao , Shichen Shuai , Bing Yu , Junqing Rong , Hui Chen
{"title":"基于机器学习和生产数据的层间识别和连通性分析:以M油田为例","authors":"Xiaoshuai Wu ,&nbsp;Yuanliang Zhao ,&nbsp;Jianpeng Zhao ,&nbsp;Shichen Shuai ,&nbsp;Bing Yu ,&nbsp;Junqing Rong ,&nbsp;Hui Chen","doi":"10.1016/j.aiig.2025.100119","DOIUrl":null,"url":null,"abstract":"<div><div>Interlayer is an important factor affecting the distribution of remaining oil. Accurate identification of interlayer distribution is of great significance in guiding oilfield production and development. However, the traditional method of identifying interlayers has some limitations: (1) Due to the existence of overlaps in the cross plot for different categories of interlayers, it is difficult to establish a determined model to classify the type of interlayer; (2) Traditional identification methods only use two or three logging curves to identify the types of interlayers, making it difficult to fully utilize the information of the logging curves, the recognition accuracy will be greatly reduced; (3) For a large number of complex logging data, interlayer identification is time-consuming and labor-intensive. Based on the existing well area data such as logging data and core data, this paper uses machine learning method to quantitatively identify the interlayers in the single well layer of CⅢ sandstone group in the M oilfield. Through the comparison of various classifiers, it is found that the decision tree method has the best applicability and the highest accuracy in the study area. Based on single well identification of interlayers, the continuity of well interval interlayers in the study area is analyzed according to the horizontal well. Finally, the influence of the continuity of interlayers on the distribution of remaining oil is verified by the spatial distribution characteristics of interlayers combined with the production situation of the M oilfield.</div></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"6 1","pages":"Article 100119"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of interlayer and connectivity analysis based on machine learning and production data: A case study from M oilfield\",\"authors\":\"Xiaoshuai Wu ,&nbsp;Yuanliang Zhao ,&nbsp;Jianpeng Zhao ,&nbsp;Shichen Shuai ,&nbsp;Bing Yu ,&nbsp;Junqing Rong ,&nbsp;Hui Chen\",\"doi\":\"10.1016/j.aiig.2025.100119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Interlayer is an important factor affecting the distribution of remaining oil. Accurate identification of interlayer distribution is of great significance in guiding oilfield production and development. However, the traditional method of identifying interlayers has some limitations: (1) Due to the existence of overlaps in the cross plot for different categories of interlayers, it is difficult to establish a determined model to classify the type of interlayer; (2) Traditional identification methods only use two or three logging curves to identify the types of interlayers, making it difficult to fully utilize the information of the logging curves, the recognition accuracy will be greatly reduced; (3) For a large number of complex logging data, interlayer identification is time-consuming and labor-intensive. Based on the existing well area data such as logging data and core data, this paper uses machine learning method to quantitatively identify the interlayers in the single well layer of CⅢ sandstone group in the M oilfield. Through the comparison of various classifiers, it is found that the decision tree method has the best applicability and the highest accuracy in the study area. Based on single well identification of interlayers, the continuity of well interval interlayers in the study area is analyzed according to the horizontal well. Finally, the influence of the continuity of interlayers on the distribution of remaining oil is verified by the spatial distribution characteristics of interlayers combined with the production situation of the M oilfield.</div></div>\",\"PeriodicalId\":100124,\"journal\":{\"name\":\"Artificial Intelligence in Geosciences\",\"volume\":\"6 1\",\"pages\":\"Article 100119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666544125000152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544125000152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

层间是影响剩余油分布的重要因素。准确识别层间分布对指导油田生产和开发具有重要意义。然而,传统的中间层识别方法存在一定的局限性:(1)由于不同类别的中间层在交叉图中存在重叠,难以建立确定的模型对中间层类型进行分类;(2)传统识别方法仅利用2条或3条测井曲线识别夹层类型,难以充分利用测井曲线信息,识别精度将大大降低;(3)对于大量复杂的测井资料,层间识别费时费力。本文基于M油田CⅢ砂岩群单井层间的测井、岩心等现有井区资料,采用机器学习方法对CⅢ砂岩群单井层间进行定量识别。通过对各种分类器的比较,发现决策树方法在研究区域具有最好的适用性和最高的准确率。在单井层间识别的基础上,根据水平井分析了研究区井段层间的连续性。最后,结合M油田的生产情况,通过层间空间分布特征验证了层间连续性对剩余油分布的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of interlayer and connectivity analysis based on machine learning and production data: A case study from M oilfield
Interlayer is an important factor affecting the distribution of remaining oil. Accurate identification of interlayer distribution is of great significance in guiding oilfield production and development. However, the traditional method of identifying interlayers has some limitations: (1) Due to the existence of overlaps in the cross plot for different categories of interlayers, it is difficult to establish a determined model to classify the type of interlayer; (2) Traditional identification methods only use two or three logging curves to identify the types of interlayers, making it difficult to fully utilize the information of the logging curves, the recognition accuracy will be greatly reduced; (3) For a large number of complex logging data, interlayer identification is time-consuming and labor-intensive. Based on the existing well area data such as logging data and core data, this paper uses machine learning method to quantitatively identify the interlayers in the single well layer of CⅢ sandstone group in the M oilfield. Through the comparison of various classifiers, it is found that the decision tree method has the best applicability and the highest accuracy in the study area. Based on single well identification of interlayers, the continuity of well interval interlayers in the study area is analyzed according to the horizontal well. Finally, the influence of the continuity of interlayers on the distribution of remaining oil is verified by the spatial distribution characteristics of interlayers combined with the production situation of the M oilfield.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信