{"title":"非线性结构地震反应预测的本构模型约束物理信息神经网络框架","authors":"Yongxin Wu , Zhanpeng Yin , Yufeng Gao , Shangchuan Yang , Yue Hou","doi":"10.1016/j.cma.2025.118079","DOIUrl":null,"url":null,"abstract":"<div><div>Seismic response prediction presents a significant challenge in earthquake engineering, particularly in balancing computational efficiency with physical accuracy. Traditional numerical methods are computationally expensive for performing large-scale nonlinear analyses, while data-driven machine learning approaches, though computational efficiency, often lack physical constraints and sufficient training data. Physics-Informed Neural Networks (PINNs), an emerging approach that integrates physical laws with deep learning techniques to solve complex scientific and engineering problems, show great potential. However, incorporating nonlinear constitutive models to accurately describe the structural behavior under seismic loading remains a challenge. In this study, a new framework, constitutive model-constrained physics-informed neural networks (CM-PINNs), is proposed to address this issue. This framework enhances prediction accuracy and physical interpretability by incorporating nonlinear constitutive constraints into the loss function. It also uses a fully connected skip LSTM architecture and implements an adaptive loss weight initialization strategy. Numerical validation demonstrates the superior performance of the CM-PINNs framework in simulating single-degree-of-freedom nonlinear seismic responses. Under limited training data conditions, CM-PINNs demonstrates notably superior performance compared to existing methods such as physics-informed multi-LSTM networks (PhyLSTM). Additionally, the scalability of CM-PINNs is verified through its application to multi-layer shear building structures. The results demonstrate that CM-PINNs provide a computationally efficient and reliable approach for seismic response prediction.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"443 ","pages":"Article 118079"},"PeriodicalIF":6.9000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constitutive model-constrained physics-informed neural networks framework for nonlinear structural seismic response prediction\",\"authors\":\"Yongxin Wu , Zhanpeng Yin , Yufeng Gao , Shangchuan Yang , Yue Hou\",\"doi\":\"10.1016/j.cma.2025.118079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Seismic response prediction presents a significant challenge in earthquake engineering, particularly in balancing computational efficiency with physical accuracy. Traditional numerical methods are computationally expensive for performing large-scale nonlinear analyses, while data-driven machine learning approaches, though computational efficiency, often lack physical constraints and sufficient training data. Physics-Informed Neural Networks (PINNs), an emerging approach that integrates physical laws with deep learning techniques to solve complex scientific and engineering problems, show great potential. However, incorporating nonlinear constitutive models to accurately describe the structural behavior under seismic loading remains a challenge. In this study, a new framework, constitutive model-constrained physics-informed neural networks (CM-PINNs), is proposed to address this issue. This framework enhances prediction accuracy and physical interpretability by incorporating nonlinear constitutive constraints into the loss function. It also uses a fully connected skip LSTM architecture and implements an adaptive loss weight initialization strategy. Numerical validation demonstrates the superior performance of the CM-PINNs framework in simulating single-degree-of-freedom nonlinear seismic responses. Under limited training data conditions, CM-PINNs demonstrates notably superior performance compared to existing methods such as physics-informed multi-LSTM networks (PhyLSTM). Additionally, the scalability of CM-PINNs is verified through its application to multi-layer shear building structures. The results demonstrate that CM-PINNs provide a computationally efficient and reliable approach for seismic response prediction.</div></div>\",\"PeriodicalId\":55222,\"journal\":{\"name\":\"Computer Methods in Applied Mechanics and Engineering\",\"volume\":\"443 \",\"pages\":\"Article 118079\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Applied Mechanics and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045782525003512\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525003512","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Seismic response prediction presents a significant challenge in earthquake engineering, particularly in balancing computational efficiency with physical accuracy. Traditional numerical methods are computationally expensive for performing large-scale nonlinear analyses, while data-driven machine learning approaches, though computational efficiency, often lack physical constraints and sufficient training data. Physics-Informed Neural Networks (PINNs), an emerging approach that integrates physical laws with deep learning techniques to solve complex scientific and engineering problems, show great potential. However, incorporating nonlinear constitutive models to accurately describe the structural behavior under seismic loading remains a challenge. In this study, a new framework, constitutive model-constrained physics-informed neural networks (CM-PINNs), is proposed to address this issue. This framework enhances prediction accuracy and physical interpretability by incorporating nonlinear constitutive constraints into the loss function. It also uses a fully connected skip LSTM architecture and implements an adaptive loss weight initialization strategy. Numerical validation demonstrates the superior performance of the CM-PINNs framework in simulating single-degree-of-freedom nonlinear seismic responses. Under limited training data conditions, CM-PINNs demonstrates notably superior performance compared to existing methods such as physics-informed multi-LSTM networks (PhyLSTM). Additionally, the scalability of CM-PINNs is verified through its application to multi-layer shear building structures. The results demonstrate that CM-PINNs provide a computationally efficient and reliable approach for seismic response prediction.
期刊介绍:
Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.