基于人工智能的机器学习协议能够更快地评估主动脉生物力学:一个案例研究

IF 0.7 Q4 SURGERY
Pete H. Gueldner BS , Katherine E. Kerr BSBME , Nathan Liang MD , Timothy K. Chung PhD , Tiziano Tallarita MD , Joe Wildenberg MD , Jason Beckermann MD , David A. Vorp PhD , Indrani Sen MD
{"title":"基于人工智能的机器学习协议能够更快地评估主动脉生物力学:一个案例研究","authors":"Pete H. Gueldner BS ,&nbsp;Katherine E. Kerr BSBME ,&nbsp;Nathan Liang MD ,&nbsp;Timothy K. Chung PhD ,&nbsp;Tiziano Tallarita MD ,&nbsp;Joe Wildenberg MD ,&nbsp;Jason Beckermann MD ,&nbsp;David A. Vorp PhD ,&nbsp;Indrani Sen MD","doi":"10.1016/j.jvscit.2025.101806","DOIUrl":null,"url":null,"abstract":"<div><div>Analyzing aortic biomechanical wall stresses for abdominal aortic aneurysms remains challenging. Clinical applications of biomechanical and morphological image-based analysis protocols have limited adoption owing to the time and expertise required. Our multidisciplinary and multi-institute team has demonstrated the feasibility of expediting advanced aortic image analysis on a single patient tracked longitudinally. We also demonstrate the utility of a previously trained artificial intelligence-based classifier that accurately predicts patient outcomes, a potential alternative to serial surveillance. This paper describes the overall workflow and processes performed in a 70-year-old man who was incidentally diagnosed to have a 5.4-cm juxtarenal aortic aneurysm in 2016 with successful fenestrated endovascular repair in 2023.</div></div>","PeriodicalId":45071,"journal":{"name":"Journal of Vascular Surgery Cases Innovations and Techniques","volume":"11 4","pages":"Article 101806"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-based machine learning protocols enable quicker assessment of aortic biomechanics: A case study\",\"authors\":\"Pete H. Gueldner BS ,&nbsp;Katherine E. Kerr BSBME ,&nbsp;Nathan Liang MD ,&nbsp;Timothy K. Chung PhD ,&nbsp;Tiziano Tallarita MD ,&nbsp;Joe Wildenberg MD ,&nbsp;Jason Beckermann MD ,&nbsp;David A. Vorp PhD ,&nbsp;Indrani Sen MD\",\"doi\":\"10.1016/j.jvscit.2025.101806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Analyzing aortic biomechanical wall stresses for abdominal aortic aneurysms remains challenging. Clinical applications of biomechanical and morphological image-based analysis protocols have limited adoption owing to the time and expertise required. Our multidisciplinary and multi-institute team has demonstrated the feasibility of expediting advanced aortic image analysis on a single patient tracked longitudinally. We also demonstrate the utility of a previously trained artificial intelligence-based classifier that accurately predicts patient outcomes, a potential alternative to serial surveillance. This paper describes the overall workflow and processes performed in a 70-year-old man who was incidentally diagnosed to have a 5.4-cm juxtarenal aortic aneurysm in 2016 with successful fenestrated endovascular repair in 2023.</div></div>\",\"PeriodicalId\":45071,\"journal\":{\"name\":\"Journal of Vascular Surgery Cases Innovations and Techniques\",\"volume\":\"11 4\",\"pages\":\"Article 101806\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vascular Surgery Cases Innovations and Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468428725000887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vascular Surgery Cases Innovations and Techniques","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468428725000887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

摘要

分析腹主动脉瘤的生物力学壁应力仍然具有挑战性。由于时间和专业知识的限制,基于生物力学和形态学图像的分析方案的临床应用受到限制。我们的多学科和多研究所团队已经证明了加速对单个患者进行纵向跟踪的高级主动脉图像分析的可行性。我们还展示了先前训练过的基于人工智能的分类器的实用性,该分类器可以准确预测患者结果,这是连续监测的潜在替代方案。本文描述了一名70岁男性患者的总体工作流程和过程,该患者于2016年偶然诊断出患有5.4 cm的枢椎旁主动脉瘤,并于2023年成功进行了开窗血管内修复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial intelligence-based machine learning protocols enable quicker assessment of aortic biomechanics: A case study
Analyzing aortic biomechanical wall stresses for abdominal aortic aneurysms remains challenging. Clinical applications of biomechanical and morphological image-based analysis protocols have limited adoption owing to the time and expertise required. Our multidisciplinary and multi-institute team has demonstrated the feasibility of expediting advanced aortic image analysis on a single patient tracked longitudinally. We also demonstrate the utility of a previously trained artificial intelligence-based classifier that accurately predicts patient outcomes, a potential alternative to serial surveillance. This paper describes the overall workflow and processes performed in a 70-year-old man who was incidentally diagnosed to have a 5.4-cm juxtarenal aortic aneurysm in 2016 with successful fenestrated endovascular repair in 2023.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
14.30%
发文量
219
审稿时长
29 weeks
期刊介绍: Journal of Vascular Surgery Cases and Innovative Techniques is a surgical journal dedicated to publishing peer review high quality case reports, vascular images and innovative techniques related to all aspects of arterial, venous, and lymphatic diseases and disorders, including vascular trauma, malformations, wound care and the placement and maintenance of arterio-venous dialysis accesses with an emphasis on the practicing clinician. The Journal seeks to provide novel and timely information to vascular surgeons, interventionalists, phlebologists, wound care specialists, and allied health professionals involved with the management of patients with the entire spectrum of vascular disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信