Yifang Fu , Ban Wang , Huimin Zhao , Mengqi Zhou , Ni Li , Zhenghong Gao
{"title":"多故障和不确定性下过渡飞行混合垂直起降无人机的自适应安全姿态控制","authors":"Yifang Fu , Ban Wang , Huimin Zhao , Mengqi Zhou , Ni Li , Zhenghong Gao","doi":"10.1016/j.ast.2025.110284","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid VTOL UAVs combine the configuration advantages of fixed-wing UAVs and rotary-wing UAVs, offering great environmental adaptability and improved forward flight efficiency, but they also impose more stringent demands on UAVs' safety attitude control, particularly during the transition mode. To address this issue, this paper proposes an adaptive safety attitude control strategy for a hybrid VTOL UAV to compensate for multiple faults and uncertainties under transition flight. Firstly, dynamic modeling and control allocation scheme design of the studied UAV are performed. Then, a novel reaching law-based sliding mode control strategy is developed, ensuring robust tracking performance under model uncertainties while mitigating control chattering. Following this, an adaptive fault-tolerant control strategy is formulated for the VTOL UAV, which is capable to simultaneously address model uncertainties and actuator faults in both rotors and control surfaces, while effectively preventing the overestimation of adaptive control parameters and avoiding control chattering. Finally, simulation tests of the UAV's transition flight under multiple faults and uncertainties are conducted. The quantitative comparison results demonstrate the effectiveness of the proposed strategy for enhancing attitude control safety.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"163 ","pages":"Article 110284"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive safety attitude control of a hybrid VTOL UAV under transition flight subject to multiple faults and uncertainties\",\"authors\":\"Yifang Fu , Ban Wang , Huimin Zhao , Mengqi Zhou , Ni Li , Zhenghong Gao\",\"doi\":\"10.1016/j.ast.2025.110284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hybrid VTOL UAVs combine the configuration advantages of fixed-wing UAVs and rotary-wing UAVs, offering great environmental adaptability and improved forward flight efficiency, but they also impose more stringent demands on UAVs' safety attitude control, particularly during the transition mode. To address this issue, this paper proposes an adaptive safety attitude control strategy for a hybrid VTOL UAV to compensate for multiple faults and uncertainties under transition flight. Firstly, dynamic modeling and control allocation scheme design of the studied UAV are performed. Then, a novel reaching law-based sliding mode control strategy is developed, ensuring robust tracking performance under model uncertainties while mitigating control chattering. Following this, an adaptive fault-tolerant control strategy is formulated for the VTOL UAV, which is capable to simultaneously address model uncertainties and actuator faults in both rotors and control surfaces, while effectively preventing the overestimation of adaptive control parameters and avoiding control chattering. Finally, simulation tests of the UAV's transition flight under multiple faults and uncertainties are conducted. The quantitative comparison results demonstrate the effectiveness of the proposed strategy for enhancing attitude control safety.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"163 \",\"pages\":\"Article 110284\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963825003554\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963825003554","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Adaptive safety attitude control of a hybrid VTOL UAV under transition flight subject to multiple faults and uncertainties
Hybrid VTOL UAVs combine the configuration advantages of fixed-wing UAVs and rotary-wing UAVs, offering great environmental adaptability and improved forward flight efficiency, but they also impose more stringent demands on UAVs' safety attitude control, particularly during the transition mode. To address this issue, this paper proposes an adaptive safety attitude control strategy for a hybrid VTOL UAV to compensate for multiple faults and uncertainties under transition flight. Firstly, dynamic modeling and control allocation scheme design of the studied UAV are performed. Then, a novel reaching law-based sliding mode control strategy is developed, ensuring robust tracking performance under model uncertainties while mitigating control chattering. Following this, an adaptive fault-tolerant control strategy is formulated for the VTOL UAV, which is capable to simultaneously address model uncertainties and actuator faults in both rotors and control surfaces, while effectively preventing the overestimation of adaptive control parameters and avoiding control chattering. Finally, simulation tests of the UAV's transition flight under multiple faults and uncertainties are conducted. The quantitative comparison results demonstrate the effectiveness of the proposed strategy for enhancing attitude control safety.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.